首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic nanoparticles with a diameter of about 60 nm were synthesized by coprecipitation from ferrous and ferric iron solutions and coated with silica. Then the nanoparticles were modified with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS) in order to immobilize anti-CD34+ monoclonal antibodies to the surface of modified magnetic particles. The results of transmission electron microscope (TEM) and Fourier transformed infrared (FT-IR) indicated that the nanoparticles were successfully prepared. Scanning electron microscope (SEM) photo confirmed that the mouse CD34+ cells (cells expressing CD34) were separated by the immunomagnetic nanoparticles. The viability of the separated cells was studied by hematopoietic colony-forming assay, the result of which showed that the target cells still had an ability of proliferation and differentiation. The application of the separated CD34+ cells was in testing the pharmacological effect of three samples isolated from enzyme-digested traditional Chinese medicine Colla corii asini.  相似文献   

2.
Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3+ stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.  相似文献   

3.
Magnetic phase consisting of α-Fe particles arranged in a thin near-surface layer has been synthesized in modified phosphorus-containing polymethylmethacrylate by Fe+ implantation at an energy of 40 keV with a dose of 1.2⊙1017 ion/cm2. The spectrum of magnetic resonance of the obtained samples is a superposition of a wide anisotropic absorption line and a set of reproducible lowintensity noiselike signals registered in a wide range of magnetic field. It has been established that a wide absorption line is due to particle conglomerates (larger than 200 nm), each behaving as a thin ferromagnetic film. Noiselike lines can be explained as resonance signals from separate oblate/prolate nanoparticles (50–200 nm in size) randomly oriented with respect to the irradiated surface. Such complicated nanostructures can be formed at an appropriate combination of properties of a polymer matrix, types of bombarded ions and implantation regimes.  相似文献   

4.
Studies were performed on surface modification of antibacterial TiO2/Ag+ nanoparticles by grafting γ-aminopropyltriethoxysilane (APS). The interfacial structure of the modified particles was characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The thickness of the surface layer was determined by using Auger electron spectroscopy (AES). The results show that APS is chemically bonded to the surface of antibacterial TiO2/Ag+ nanoparticles. Furthermore, the modified particles were mixed in PVC to prepare composites whose antibacterial property was investigated. The results suggest that surface modification has no negative effect on antibacterial activity of TiO2/Ag+ nanoparticles and PVC-TiO2/Ag+ composites exhibits good antibacterial property.  相似文献   

5.
The complete separation of mixtures of magnetic particles was achieved by on-chip free-flow magnetophoresis. In continuous flow, magnetic particles were deflected from the direction of laminar flow by a perpendicular magnetic field depending on their magnetic susceptibility and size and on the flow rate. 2.8 and 4.5 μm superparamagnetic particles with magnetic susceptibilities of 1.1×10−4 and 1.6×10−4 m3 kg−1, respectively, could be completely separated from each other reproducibly. The separated particles were detected by video observation and also by on-chip laser light scattering. Potential applications of this separation method include sorting of magnetic micro- and nanoparticles as well as magnetically labelled cells.  相似文献   

6.
γ-Fe2O3 (maghemite)-silica nanocomposite particles were synthesized using a sol-gel method. The condensation products of 3-glycidoxy propyltrimethoxy silane (GPTMS) and nitrilotriacetic acid (NTA) were introduced onto the surfaces of the γ-Fe2O3-silica nanocomposite particles and subsequently, these modified surfaces were complexed with cobalt (Co+2) metal ions. A possibility of using these surface modified γ-Fe2O3-silica particles for the purification of 6×histidine tagged recombinant benzaldehyde lyase (BAL, EC 4.1.2.38) based on magnetic separation was investigated. X-ray diffraction (XRD), thermal analysis, and vibrating sample magnetometry (VSM) methods were used to characterize the surface modified superparamagnetic γ-Fe2O3 (maghemite)-silica nanoparticles. XRD (Scherer's equation) results indicate that the primary particle size of maghemite was around 11 nm. Magnetic characterization results confirmed that the γ-Fe2O3 (maghemite)-silica nanoparticles were superparamagnetic. According to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results, these superparamagnetic nanoparticles specifically capture 6×His-tagged BAL from crude extract of Escherichia coli (E. coli) BL21(DE3)pLysS/BALHIS. This study shows that the surface modified γ-Fe2O3 (maghemite)-silica nanoparticles are eligible for immobilized metal-ion affinity adsorption for histidine tagged recombinant proteins with its high capacity (3.16±0.4 mg/g) and selectivity.  相似文献   

7.
A versatile method was developed for the chain-end functionalization of the grafted polymer chains for surface modification of nanoparticles with functionalized groups through a combination of surface-initiated atom-transfer radical polymerization (ATRP) and Huisgen [3 + 2] cycloaddition. First, the surface of SiO2 nanoparticles was modified with poly(methyl methacrylate) (PMMA) brushes via the “grafting from” approach. The terminal bromides of PMMA-grafted SiO2 nanoparticles were then transformed into an azide function by nucleophilic substitution. These azido-terminated PMMA brushes on the nanoparticle surface were reacted with alkyne-terminated functional end group via Huisgen [3 + 2] cycloaddition. FTIR and 1H NMR spectra indicated quantitative transformation of the chain ends of PMMA brushes onto SiO2 nanoparticles into the desired functional group. And, the dispersibility of the end-functional polymer-grafted SiO2 nanoparticles was investigated with a transmission electron microscope (TEM).  相似文献   

8.
A magnetic core–shell-layered polymer microsphere (MPS) was successfully synthesized by a dispersion polymerization route, where the modified Fe3O4 nanoparticles (MFN) were used as a core, while poly(maleic anhydride-co-methacrylic acid) P(MAH-co-MAA) as a shell was covered on the surface of the Fe3O4 nanoparticles. Environmental scanning electron microscope (ESME) and transmission electron microscope (TEM) measurements indicate that the magnetic P(MAH-co-MAA)/Fe3O4 composite microspheres assume sphericity and have a novel core–shell-layered structure. The crystal particle sizes of the unimproved Fe3O4 and the MFN samples vary from 8 to 16 nm in diameter, and the average size is about 10.6 nm in diameter. The core–shell magnetic composite microspheres can be adjusted by changing the stirring speed. Since multiple Fe3O4 cores were coated with a proper percentage of P(MAH-co-MAA) copolymers, and therefore lower density was acquired for the MPS, which improved sedimentation and dispersion behavior. The saturated magnetization of pure Fe3O4 nanoparticles reaches 48.1 emu g−1 and the value for composite nanoparticles was as high as 173.5 emu g−1. The nanoparticles show strong superparamagnetic characteristics and can be expected to be used as a candidate for magnetism-controlled drug release.  相似文献   

9.
This study reports the new and simple synthesis of magnetic La0.7Sr0.3MnO3 (LSMO) nanoparticles by thermal decomposition method using acetate salts of La, Sr and Mn as starting materials. To obtain the LSMO nanoparticles, thermal decomposition of the precursor is carried out at the temperatures of 600, 700, 800, 900, and 1000°C for 6 hours. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM and SEM. Structural characterization shows that the prepared particles consisted of two phases of LaMnO3 (LMO) and LSMO with crystallite sizes ranging from 18 to 55 nm. All the prepared samples have a perovskite structure which changes from cubic to rhombohedral with the increase in the thermal decomposition temperature. Basic magnetic characteristics such as saturation magnetization (M S) and coercive field (H C) are evaluated by sample vibrating magnetometry at room temperature (20°C). The samples show soft ferromagnetic behavior with M S values of ∼9–55 emu/g and H C values of ∼8–37 Oe, depending on the crystallite size and thermal decomposition temperature. The relationship between the crystallite size and the magnetic properties is presented and discussed. The cytotoxicity of synthesized LSMO nanoparticles was also evaluated with NIH 3T3 cells and the result showed that the synthesized nanoparticles were not toxic to the cells as determined from cell viability in response to the liquid extraction of LSMO nanoparticles.  相似文献   

10.
We have prepared composite magnetic core–shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe2O4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe2O4 nanoparticles were controlled in the range of 2.4–6.7 nm by the concentration of [NH4+] and heated temperature. The magnetic properties of the core–shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe2O4.  相似文献   

11.
Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.  相似文献   

12.
In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.  相似文献   

13.
The polydiethylsiloxane-based ferrofluid was prepared by dispersing finely divided magnetic Fe3O4 particles which are modified with oleoyl sarcosine and lauroyl sarcosine. The optimized experiment parameters including molar ratio of surfactant to Fe3O4 (1:5), temperature (80 °C), stirring rate (300 RPM), the surfactant content of lauroyl sarcosine (0 to 33 mol%) and the modification time (25 min) were obtained by the orthogonal test. The magnetic liquid was characterized by a transmission electron microscope (TEM), infrared (IR) spectrometer, X-ray diffractometer (XRD), thermogravimetry (TG), vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). It is indicated that the surfactant is mainly bonded to the surface of Fe3O4 nanoparticles through covalent bond between carboxylate (COO) and Fe atom. The modified magnetic particles are equally dispersed into the carrier and remain stable below −12 °C over 4 months. The ferrofluids exhibit excellent frost resistance property and distinctly reduced temperature coefficient of viscosity compared with polydimethylsiloxane-based ferrofluids and hydrocarbon-based ferrofluids, respectively. The saturation magnetization could reach up to 27.7 emu/g.  相似文献   

14.
The introduction of a hydrophobic moiety on chitosan enhances the self-assembling properties, mucoadhesion, the permeability of the macromolecule and aids in target specific delivery. Our group synthesized a hydrophobic trans N-(6,6-Dimethyl-2-hepten-4-ynyl)chitosan derivative (CSD) and studied the surface modification of ZnS nanoparticles in a single pot reaction. X-ray diffraction studies and FESEM imaging confirms the nano size and morphology of the surface modified Zinc sulfide nanoparticles (ZnS-CSD NPs). The proposed ZnS-CSD NPs showed excellent emission at 457 nm. Photostability studies indicate that the surface modified ZnS-CSD NPs possess better photostability than Rhodamine B and FITC. Cell viability tests confirmed the biocompatibility of the modified nanoparticles. All these features of ZnS- CSD NPs makes these candidates an excellent choice in a wide range of in vitro or in vivo studies as fluorescent biological labels.  相似文献   

15.
By adopting a fast photography and time-resolved optical emission spectrometry, we have investigated the effects of transverse magnetic field on the expansion dynamics and enrichment of Zn atoms and Zn+ ions in a plume produced by laser ablation of a Zn target in oxygen atmosphere. Plume splitting due to the magnetic field was apparent but the splitting patterns of Zn and Zn+ were totally different. The surface morphology and photoluminescence characteristics also changed significantly. In particular, the growth rate increased by as much as 2.4-4.3 times compared to the conventional PLD method.  相似文献   

16.
Fe3O4 magnetic nanoparticles (MNPs) were synthesized by the co-precipitation of Fe3+ and Fe2+ with ammonium hydroxide. The sodium citrate-modified Fe3O4 MNPs were prepared under Ar protection and were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). To improve the oxidation resistance of Fe3O4 MNPs, a silica layer was coated onto the modified and unmodified MNPs by the hydrolysis of tetraethoxysilane (TEOS) at 50 °C and pH 9. Afterwards, the silica-coated Fe3O4 core/shell MNPs were modified by oleic acid (OA) and were tested by IR and VSM. IR results revealed that the OA was successfully grafted onto the silica shell. The Fe3O4/SiO2 core/shell MNPs modified by OA were used to prepare water-based ferrofluids (FFs) using PEG as the second layer of surfactants. The properties of FFs were characterized using a UV-vis spectrophotometer, a Gouy magnetic balance, a laser particle size analyzer and a Brookfield LVDV-III+ rheometer.  相似文献   

17.
In this investigation, carbon sputtering yields were measured experimentally at varying angles of incidence under Xe+ bombardment. The measurements were obtained by etching a coated quartz crystal microbalance (QCM) with a low energy ion beam. The material properties of the carbon targets were characterized with a scanning electron microscope (SEM) and Raman spectroscopy. C sputtering yields measured under Ar+ and Xe+ bombardment at normal incidence displayed satisfactory agreement with previously published data over an energy range of 200 eV-1 keV. For Xe+ ions, the dependence of the yields on angle of incidence θ was determined for 0° ≤ θ ≤ 80°. Over this range, an increase in C sputtering yield by a factor of 4.8 was observed, with the peak in yield occurring at 70°. This is a much higher variation compared to Xe+ → Mo yields under similar conditions, a difference that may be attributed to higher scattering of the incident particles transverse to the beam direction than in the case of Xe+ → C. In addition, the variation of the yields with θ was not strongly energy dependent. Trapping of Xe in the surface was observed, in contrast to observations using the QCM technique with metallic target materials. Finally, target surface roughness was characterized using atomic force microscope measurements to distinguish between the effects of local and overall angle of incidence of the target.  相似文献   

18.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

19.
Monodispersed Mn2+ doped CdS nanoparticles with average size as small as 1.8 nm have been synthesized through chemical method. The nanostructures of the prepared nanoparticles have been confirmed through X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption and transmission electron microscope (TEM) measurements. The photoluminescence emission covering 450-650 nm of the visible region is observed under ultraviolet light excitation, from Mn2+ doped CdS nanoparticles dispersed in dimethyl sulfoxide (DMSO).  相似文献   

20.
Maghemite nanoparticles with various coatings were prepared by the coprecipitation method and characterized by transmission electron microscopy, dynamic light scattering and IR in terms of morphology, size, polydispersity and surface coating. The labeling efficiency and the viability of both rat and human mesenchymal stem cells labeled with Endorem®, poly(l-lysine) (PLL)-modified Endorem®, uncoated γ-Fe2O3, d-mannose-, PLL- or poly(N,N-dimethylacrylamide) (PDMAAm)-coated γ-Fe2O3 nanoparticles were compared. Coated γ-Fe2O3 nanoparticles labeled cells better than did Endorem®. High relaxation rates and in vitro magnetic resonance imaging of cells labeled with coated nanoparticles showed clearly visible contrast compared with unlabeled cells or cells labeled with Endorem®.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号