首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Using first-principles calculations, we study the electronic transport properties in Au(C20)2Au molecular junctions with different contact interface configurations: point contact and bond contact. We observe that the transmission through the bond contact is considerably higher than that of point contact. Furthermore, the I-V characteristics are rather different. For the bond contact, we get a metallic behavior followed by a varistor-type behavior. While as for the point contact, the current increases very slowly in a nonlinear way and is one order of magnitude smaller than that of bond contact. We attribute these obvious differences to the distinct contact configurations.  相似文献   

2.
The defects, impurities and their bonding states of unintentionally doped cubic boron nitride (cBN) single crystals were investigated by X-ray photoelectron spectroscopy (XPS). The results indicate that nitrogen vacancy (VN) is the main native defect of the cBN crystals since the atomic ratio of B:N is always larger than 1 before Ar ion sputtering. After sputter cleaning, around 6 at% carbon, which probably comes from the growth chamber, remains in the samples as the main impurity. Carbon can substitute nitrogen lattice site and form the bonding states of CBN or CB, which can be verified by the XPS spectra of C1s, B1s and N1s. The C impurity (acceptor) and N vacancy (donor) can compose the donor-acceptor complex to affect the electrical and optical properties of cBN crystals.  相似文献   

3.
电子壳模型势函数在离子晶体的原子级计算机模拟中有广泛应用,其势参数主要通过拟合晶体的实验数据或电子结构数据得到.提出了通过拟合双原子分子的量子化学从头计算电子结构数据来获得该势函数的方法,并由H2分子的电子结构数据建立了H原子间的电子壳模型势函数.此外,还应用该势函数对H+2分子离子进行了计算.该势函数拟合方案更适合于共价键型的分子. 关键词: 电子壳模型势 参数拟合 共价键 2分子')" href="#">H2分子  相似文献   

4.
We have theoretically studied the co-adsorption of benzene and NO on a Ru surface. The calculations were performed using the atom superposition and electron delocalisation-tight-binding (ASED-TB) method. We have modelled the Ru(0 0 1)-p(3 × 3)-4C6D6 + 2NO co-adsorbed layer from experimental data.We have confirmed that the more stable sites are hcp on the Ru for both benzene and NO co-adsorbates.The NO states are more stabilized in the co-adsorbed system. There is more bonding between RuN than RuC. We have described an important interaction of on H (from benzene) and the O (from a close NO). That results explain previous experimental reports and confirm suggested direct interaction.  相似文献   

5.
6.
The adsorption of C2H4 on the FeNi(1 1 1) alloy surface has been studied by ASED-MO tight binding calculations. The C2H4 molecule presents its most stable geometry with the CC bond axis parallel to the surface along the [1, −1, 0] direction, bonded on top Fe atom and bonded along a Fe-Fe bridge site. As a consequence, the strength of the local Fe-Fe bond decreases between 37 and 62% of its original bulk value. This bond weakening is mainly due to the new C-Fe interactions however no Fe3C carbide formation is evidenced on surface. The Fe-Ni and Ni-Ni superficial bonds are only slightly modified.  相似文献   

7.
Geometries and stabilities of the linear aluminum-bearing carbon chains AlC2nH (n = 1-5) in their ground states have been explored by the DFT-B3LYP and RCCSD(T) methods. Structures of the X1Σ+ and 11Π electronic states have also been optimized by the CASSCF approach. The studies indicate that these species have single-triple bond alternate pattern, AlCCCC?CCH, and the electronic excitation from X1Σ+ to 11Π leads to the shortening of the AlC bonds. The vertical excitation energies of the 11Π ← X1Σ+ and 21Π ← X1Σ+ transitions for AlC2nH (n = 1-5) have been investigated by the CASPT2, EOM-CCSD, and TD-B3LYP levels of theory with the cc-pVTZ basis set, respectively. CASPT2-predicted 11Π ← X1Σ+ transition energies are 3.57, 3.44, 3.33, 3.26, and 3.21 eV, respectively. For AlC2H, our estimate agrees very well with the experimental value of 3.57 eV. In addition, the AlC bond dissociation energies and the exponential-decay curves for these vertical excitation energies are also discussed.  相似文献   

8.
The effect of CCC bond bending on the photodissociation of cyclobutane to form two ethylene molecules was investigated by performing semiclassical electron-radiation-ion dynamics simulations and also by examining the potential energy surfaces of the electronic ground state and lowest excited states. These potential energy surfaces, calculated at the CASSCF/MRPT2 level with 6-31G* basis sets along a reaction path determined by the semiclassical dynamics simulations, show well-defined energy minima and maxima in the intermediate state region. It is found that in addition to rotation of the molecule around the central CC bond, CCC bond bending plays an important role in determining the features of the potential energy surfaces for the intermediate species.  相似文献   

9.
10.
Soot volume fractions, C1-C12 hydrocarbon concentrations, and gas temperature were measured in ethylene/air nonpremixed flames with up to 10% dimethyl ether (CH3OCH3) or ethanol (CH3CH2OH) added to the fuel. The measurement techniques were laser-induced incandescence, photoionization mass spectroscopy, and thermocouples. Oxygenated hydrocarbons have been proposed as soot-reducing fuel additives, and nonpremixed flames are good laboratory-scale models of the fuel-rich reaction zones where soot forms in many full-scale combustion devices. However, addition of both dimethyl ether and ethanol increased the maximum soot volume fractions in the ethylene flames studied here, even though ethylene is a much sootier fuel than either oxygenate. Furthermore, dimethyl ether produced a larger increase in soot even though neat dimethyl ether flames produce less soot than neat ethanol flames. The detailed species measurements suggest that the oxygenates increase soot concentrations because they decompose to methyl radical, which promotes the formation of propargyl radical (C3H3) through C1 + C2 addition reactions and consequently the formation of benzene through propargyl self-reaction. Dimethyl ether has a stronger effect than ethanol because it decomposes more completely to methyl radical. Ethylene does not decompose to methyl, so its flames are particularly sensitive to this mechanism; the alkane-based fuels used in most practical fuels do decompose to methyl radical, so the mechanism will be much less important for practical devices.  相似文献   

11.
Z.H. Zhu  Z.H. Guo 《Physics letters. A》2008,372(10):1671-1675
First-principles density functional calculations are applied to study the growth behavior of MgB2(0001) film on MgO(111) polar surface. The surface energy calculations show that under Mg-rich conditions, Mg-terminated MgO(111) is favored, while the O-terminated is more favorable under O-rich conditions. By exploring three typical models, we calculate the interface energy that is examined as a function of the chemical potentials of Mg. It is found that the most stable structure is preferred to be Mg-terminated MgO(111)-(1×1)-BMgB-structure, where B atom is bonded to Mg atom at a hollow (top) site in interface.  相似文献   

12.
Lei Shi 《Physics letters. A》2008,372(37):5901-5904
First-principles calculations based on the plane-wave pseudopotential (PWP) method were performed to investigate the electronic structure of iodine cation substitutionally doped anatase TiO2 (referred to as IsTiO2). A 2×2×1 anatase supercell, in which one Ti atom was substituted by one iodine atom, was constructed for calculations. The calculated results reveal that iodine dopant contributes part of its 5s states to form one isolated impurity band in band gap and part of its 5p states to form some impurity bands at the bottom of conductive bands. The visible light response of IsTiO2 should be the consequence of the excitation between the two types of impurity bands (2.77 eV, about 450 nm). According to the distribution of impurity states, iodine dopant is considered to serve as a recombination center or an efficient trap for photogenerated carriers. This deduction was partly approved by water photosplitting under visible light irradiation.  相似文献   

13.
Short time molecular dynamics simulations were performed to model C60 and Au3 bombardment of an amorphous water sample in the projectile energy range of 5-120 keV. A previously proposed friction model has been applied to describe the fundamental motion of a projectile during cluster bombardment of a solid. This simple analytical model uses a definition of friction on a single particle to describe the cluster movement through a medium. Although the mathematics of the friction model vary among systems, the projectile motion and energy deposition of a single particle into the sample as well as the reactive environment created is close to that of C60 bombardment.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO2 in a two-stage hybrid system had increased the proportion of surface states of TiO2 as Ti3+. The proportion of carbon atoms as alcohol/ether (COX) was decreased with increase the RF power and carbon atoms as carbonyl (CO) functionality had increased for low RF power treatment. The proportion of C(O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO2 surfaces which may be due to decrease in C(O)OX, increase in CO and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.  相似文献   

15.
Quantum chemical calculations employing two-configuration self-consistent field theory and density functional theory have been carried out for a new diradical cation composed of two ring systems, 1,4-thiazine and 1,2,3,5-dithiadiazolyl. These ring systems are coupled through a central CN bond, and hence, the free rotation are allowed for this diradical cation. However, the singlet–triplet energy splitting has been predicted to be positive for every dihedral angle between two ring systems. Moreover, the cation diradical was found to be isoelectronic with trimethylenemethane in the planar conformation. This fact is deeply related with the robustness of high-spin correlation of the diradical cation.  相似文献   

16.
Stilbene (1,2-diphenylethylene) has shown an intriguing isomerisation behavior and may serve as a model system for “molecular switches” incorporating a CC double bond. To evaluate the possible use of such molecules as molecular switches on semiconductor surfaces, the adsorption of cis- and trans-stilbene on Si(1 0 0) has been investigated. Identification of both isomers is achieved by differences in adsorption geometry as revealed by NEXAFS, and differences in electronic structure in the occupied and unoccupied molecular orbitals. For both isomers, bonding takes place via the CC double bond to the Si dimer atoms allowing for free movement of the aromatic rings, a necessary prerequisite for photoinduced isomerisation on the surface. Our experimental results agree well with theoretical calculations.  相似文献   

17.
电子壳模型势函数在离子晶体的原子级计算机模拟中有广泛应用,其势参数主要通过拟合晶体的实验数据或电子结构数据得到.提出了通过拟合双原子分子的量子化学从头计算电子结构数据来获得该势函数的方法,并由H2分子的电子结构数据建立了H原子间的电子壳模型势函数.此外,还应用该势函数对H+2分子离子进行了计算.该势函数拟合方案更适合于共价键型的分子.  相似文献   

18.
Chemical structure of phosphorus species in polymer-based phosphoric acid-activated carbon SP800 was investigated by X-ray photoelectron spectroscopy. It has been shown that most probable structure for phosphorus species is condensed phosphates bound to carbon lattice via COP bonding.  相似文献   

19.
It is well known that the doped Sn can effectively suppress the electromigration of Cu thin-film interconnects in integrated circuits. In this paper, the first-principles method was introduced to investigate the suppression mechanism. All the calculations were performed on Sn or Cu adatom/Cu (0 0 1), (1 1 0) and (1 1 1) surface systems within local density approximation. As a Sn adatom was attached to the Cu surface, stable CuSn bonds were formed. The energy calculations show that the Sn/Cu system was more stable than Cu/Cu system with the same structure. Analysis of density of states shows that the nearest neighbor Cu atoms were stabilized by CuSn bond relative to the Cu atoms which are far away from the adatom. The diffusion barrier energies were calculated and found to be consistent with the experimental results. Also, bond population analysis shows that stronger covalent bonds were formed between Sn and Cu relative to that between Cu and Cu. All the results indicate that the CuSn bond plays an important role in the suppression of Cu electromigration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号