首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A Ni3Al coating was prepared by plasma spraying technique on the surface of titanium alloy. Ni-Al mixed powders, coatings and reaction products were investigated by scanning electron microscope, EDS, DSC and XRD. A tight bonding between the coating and the substrate was formed. The X-ray diffraction analysis of the patterns showed that the coating not only had Ni3Al phase, but also had NiO and Al2O3 phase microcontent. Comparing Ni coated Al to Ni3Al at 900 °C, the diffusion was stronger and the diffusion layer was thicker. A minute pore structure was formed at 1200 °C in the front edge of solid-state reaction layer. So Ni3Al restrained the solid-state reaction of the coating with the substrate, and as a whole weakened the entry of oxygen atoms into the substrate and quenched the out-diffusion of titanium.  相似文献   

2.
Single crystal Al2O3 samples were implanted with 45 keV Cu ion implantation at a dose of 1 × 1017 ions/cm2, and then subjected to furnace annealing in vacuum or with a flow of oxygen gas. Various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction spectroscopy and atomic force microscopy, have been used to investigate formation of Cu NPs and their evolution. Our results clearly show that the evolution of Cu NPs depends strongly on annealing atmosphere in the temperature range up to 600 °C. Annealing in vacuum only gives rise to a slight change in the size of Cu NPs. No evidence for oxidization of Cu NPs has been revealed. Remarkable modifications in Cu NPs, including the size increase and the effective transformation into CuO NPs, have been observed for the samples annealed at oxygen atmosphere. The results have been tentatively discussed in combination with the role of oxygen from atmosphere in diffusion of Cu atoms towards the surface and its interactions with Cu NPs during annealing.  相似文献   

3.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

4.
The structure and surface composition of a Ni3Sn alloy at conditions relevant for the steam reforming reaction was investigated using density functional theory calculations. Both the flat Ni3Sn(0 0 0 1) surface and a surface with steps in the closed packed direction [1 0  0]were considered. The adsorption geometries and energies of the species CO, C, OH and H were calculated. Chemical potentials were used to map out which adsorbates are on the surface under varying conditions. It was found that adsorbates preferably bind to Ni as nearest neighbor with Sn as second-nearest neighbor. The binding energy is slightly stronger than on pure Ni. Adsorbate binding to Sn was found to be very unfavorable. Binding free energies indicate that at high temperature the alloy surface will be predominantly covered by CO and C, and at low temperatures one may find H and almost no OH. Even though the nominal composition of the investigated alloy is Ni3Sn, the surface composition may differ significantly depending on temperature and pressure of the gas phase. This effect was investigated by calculating segregation energies both in the absence and in the presence of adsorbates. For the flat surface, it was found that only the bulk termination is present under relevant conditions. In contrast, it was found that for steps preferential adsorption of CO and C on Ni sites may lead to adsorption-induced segregation at temperatures below 400 °C. When taking segregation into account, the most stable Ni3Sn surfaces will not bind CO or C at the same condition that Ni does. This is in excellent agreement with the previously proven ability of Ni-Sn alloys to inhibit graphite formation.  相似文献   

5.
The anisotropic magnetoresistance (AMR) of a Ta (5 nm)/MgO (3 nm)/Ni81Fe19 (10 nm)/MgO (2 nm)/Ta (3 nm) film with MgO-Nano Oxide Layer (NOL) increases dramatically from 1.05% to 3.24% compared with a Ta (5 nm)/Ni81Fe19 (10 nm)/Ta (3 nm) film without the MgO-NOL layer after annealing at 380 °C for 2 h. Although the MgO destroys the NiFe (1 1 1) texture, it enhances the specular electron scattering of the conduction electrons at the NOL interface and suppresses the interface reactions and diffusion at the Ta/NiFe and NiFe/Ta interfaces. The NiFe (1 1 1) texture was formed after the annealing, resulting in a higher AMR ratio. X-ray photoelectron spectroscope results show that Mg and Mg2+ were present in the MgOx films.  相似文献   

6.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

7.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

8.
NbTi0.5Ni0.5O4 (NTNO) has been prepared using solid state synthesis and investigated as a potential anode material. The oxide form of NTNO has single phase rutile-type structure with tetragonal (P42/mnm) space group. The reduced form is a composite of nano-scaled particles of metallic Ni and Nb1.33Ti0.67O4 phase. Reduced NTNO showed high electronic conductivity up to 280 S.cm− 1 at 900 °C in reducing atmosphere, but suffers from low CTE equal to 3.78 10− 6 K− 1. Studies of NTNO as anode material were carried out in a three electrode - electrochemical half cell configuration under pure humidified H2 at 900 °C using a 2 mm thick zirconia electrolyte and without any additional current collector material. The results show a reasonable series resistance (Rs) equal to 2.7 Ωcm2 (about 50% higher than for metallic gold layers) indicating a good current collection performance for a 10 μm layer of material. The polarization resistance (Rp) was equal to 33 Ωcm2 and is attributed to a poor density of three phase boundaries (TPB) and shortage of oxide ion conduction in the anode layer. The results show the potential of NTNO as an anode material, especially after optimization of the microstructure towards the increase of TPB length.  相似文献   

9.
Thermal stability, oxygen non-stoichiometry and electrical conductivity of LaNi0.6Fe0.4O3δ were investigated in the temperature region of 20-1000 °C in Ar/O2 gas flows at oxygen partial pressures between 0.5 and 21,000 Pa. Diffusion mobility was measured in Ar/O2 gas flow at pO2 = 18 Pa. Crystal structure of this compound was found to be stable at the mentioned experimental conditions. LaNi0.6Fe0.4O3δ is a p-type semiconductor with metallic type conductivity above 150 °C at the investigated pO2 range. Two different (fast and slow) oxygen exchange areas on the temperature-pO2 diagram were established, which are due to two different oxygen anion positions in the double B-site mixed perovskite structure. Oxygen non-stoichiometry in the fast oxygen exchange region reaches about 0.005 of oxygen atomic index. Chemical diffusion and oxygen surface exchange coefficients do not vary at 600-800 °C, but show visible increase above 800-850 °C.  相似文献   

10.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

11.
To understand the catalytic effect in the Ni-Ni3P for the growth of carbon nanostructures, the structural and electronic properties of Ni3P surface are calculated from first-principles calculations. The calculated surface energies for the (0 0 1)-Ni4P4-terminated surface, the (0 0 1)-Ni8-terminated surface, and the (1 1 0)-Ni8-terminated surface show that the (0 0 1)-Ni4P4-terminated surface is energetically more stable within the allowed range of the chemical potential of P. Through the analysis of the partial density of states of Ni and P atoms in surface and bulk states, respectively, it is further found that due to the bond contractions of the surface layer, the core-level shifts of P atoms in the (0 0 1)-Ni4P4-terminated surface make P atoms in the Ni3P particles act as a catalyst. Finally, the obtained results of the work function show that the (0 0 1)-Ni4P4-terminated surface has the largest work function when compared with the other two studied surfaces.  相似文献   

12.
The work is concerned with the high-temperature heat treatment of an Al-12 wt.% Si alloy coated by an electroless Ni-P layer. The electroless deposition took place on a pre-treated substrate in a bath containing nickel hypophosphite, nickel lactate and lactic acid. Resulting Ni-P deposit showed a thickness of about 8 μm. The coated samples were heat-treated at 200-550 °C/1-24 h. LM, SEM, EDS and XRD were used to investigate phase transformations. Adherence to the substrate was estimated from the scratch test and microhardness of the heat-treated layers was also measured. It is found that various phase transformations occur, as both temperature and annealing time increase. These include (1) amorphous Ni-P → Ni + Ni3P, (2) Al + Ni → Al3Ni, (3) Ni3P → Ni12P5 + Ni, (4) Ni12P5 → Ni2P + Ni, and (5) Al3Ni + Ni → Al3Ni2. The formation of intermetallic phases, particularly Al3Ni2, leads to significant surface hardening, however, too thick layers of intermetallics reduce the adherence to the substrate. Based on the growth kinetics of the intermetallic phases, diffusion coefficients of Ni in Al3Ni and Al3Ni2 at 450-550 °C are estimated as follows: D(Al3Ni, 450 °C) ≈ 6 × 10−12 cm2 s−1, D(Al3Ni, 550 °C) ≈ 4 × 10−11 cm2 s−1, D(Al3Ni2, 450 °C) ≈ 1 × 10−12 cm2 s−1 and D(Al3Ni2, 550 °C) ≈ 1 × 10−11 cm2 s−1. Mechanisms of phase transformations are discussed in relation to the elemental diffusion.  相似文献   

13.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

14.
The interface between electroless plating Ni-W-P deposit and aluminium alloy (Al) matrix at different temperature heated for 1 h was studied using transmission electron microscope. The results show that the interface between as-deposited Ni-W-P deposit and Al matrix is clear. There are no crack and cavity. The bonding of Ni-W-P deposit and Al matrix is in good condition. The Ni-W-P plating is nanocrystalline phase (5-6 nm) in diameter. After being heated at 200 °C for 1 h, the interface of Ni-W-P deposit and Al matrix is clear, without the appearance of the diffusion layer. There exist a diffusion layer and educts of intermetallic compounds of nickle and aluminium such as Al3Ni, Al3Ni2, NiAl, Ni5Al3 and so on between Ni-W-P deposit and Al matrix after being heated at 400 °C for 1 h.  相似文献   

15.
Transparent surface crystallized glasses containing CdGa2S4 nonlinear optical crystal were prepared by the 70GeS2 · 15Ga2S3 · 15CdS (GGC15) chalcogenide glass. Average diameters of crystallites are about 150 nm and 600 nm for heating at 405 °C for 48 and 108 h (named GGC15-48 and GGC15-108), respectively, and the thickness of the surface crystallized layer was approximately 15 μm. By using the Maker fringe measurement, prominent second-harmonic generation was observed from these crystallized glasses, and the χ(2) of the GGC15-48 sample is calculated to be as well as 38.85 pm/V, and the value is 13.7 pm/V for the GGC15-108. They are promising to be applied in photoelectric and all-optical field in the future.  相似文献   

16.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

17.
We have investigated the control of photocatalytic behavior under deposited conditions of non-sintered target of different molar ratios with TiO2 and La2O3 from 1:0 to 1:2 for heavily La doping, and post-annealing temperature from 600 °C to 1000 °C for crystallizing by pulsed laser deposition. We have successfully crystallized heavily La-doped TiO2 films with post-annealing temperature over 800 °C and with molar ratio of TiO2:La2O3 over 1:1 on a quartz substrate. Heavily La-doped TiO2 films are observed the decomposition of methylene blue and a water-splitting reaction in photocatalytic behavior under Xe light irradiation. When stoichiometric La-doped TiO2 (TiO2:La2O3 = 1: 1) is synthesized with heat-treatment at 900 °C, the best results are obtained under photocatalytic behavior and pure La2Ti2O7 crystalline were obtained.  相似文献   

18.
To study surface behaviors, MgFe2O4 ferrite materials having different grain sizes were synthesized by two different chemical methods, i.e., a polymerization method and a reverse coprecipitation method. The single phase of the cubic MgFe2O4 was confirmed by the X-ray diffraction method for both the precursors decomposed at 600-1000 °C except for a very small peak of Fe2O3 was detected for the samples calcined at 600 and 700 °C by the polymerization method. The crystal size and particle size increased with an increase in the sintering temperature using both methods. The conductance of the MgFe2O4 decreased when the atmosphere was changed from ambient air to air containing 10.0 ppm NO2. The conductance change, C = G(air)/G(10 ppm NO2), was reduced with an increase in the operating temperature. For the polymerization method, the maximum C-value was ca. 40 at 300 °C for the samples sintered at 900 °C. However, the samples sintered at 1000 °C showed a low conductance change in the 10 ppm NO2 gas, because the ratio of the O2 gas adsorption sites on the particle surface is smaller than those of the samples having a high C-value. The low Mg content on the surface affects the low ratio of the gas adsorption sites. For the reverse coprecipitation method, the particle size was smaller than that of the polymerization method. Although a stable conductance was obtained for the sample sintered at 900 and 1000 °C, its conductance change was less than that of the polymerization method.  相似文献   

19.
XPS depth profiles were used to investigate the effects of rapid thermal annealing under varying conditions on the structural, magnetic and optical properties of Ni-doped ZnO thin films. Oxidization of metallic Ni from its metallic state to two-valence oxidation state occurred in the film annealed in air at 600 °C, while reduction of Ni2+ from its two-valence oxidation state to metallic state occurred in the film annealed in Ar at 600 and 800 °C. In addition, there appeared to be significant diffusion of Ni from the bottom to the top surface of the film during annealing in Ar at 800 °C. Both as-deposited and annealed thin films displayed obvious room temperature ferromagnetism (RTFM) which was from metallic Ni, Ni2+ or both with two distinct mechanisms. Furthermore, a significant improvement in saturation magnetization (Ms) in the films was observed after annealing in air (Ms = 0.036 μB/Ni) or Ar (Ms = 0.033 μB/Ni) at 600 °C compared to that in as-deposited film (Ms = 0.017 μB/Ni). An even higher Ms value was observed in the film annealed in Ar at 800 °C (Ms = 0.055 μB/Ni) compared to that at 600 °C mainly due to the diffusion of Ni. The ultraviolet emission of the Ni-doped ZnO thin film was restored during annealing in Ar at 800 °C, which was also attributed to the diffusion of Ni.  相似文献   

20.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号