首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

2.
There is a strong interest in developing thermally stable metallization schemes for ZnO and boride-based contact stacks are expected to have potential because of their thermodynamic stability. The contact characteristics on bulk single-crystal n-ZnO of a ZrB2/Pt/Au metallization scheme deposited by sputtering are reported as a function of annealing temperature in the range 300-800°C. The contacts were rectifying for anneal temperatures <500 °C but exhibited Ohmic behavior at higher temperatures and exhibit a minimum specific contact resistivity of 9 × 10−3 Ω cm after 700 °C anneals. The contact stack reverts to rectifying behavior after annealing above 800 °C, coincident with a degraded surface morphology and intermixing of the Au, Pt and ZrB2. The boride-based contacts exhibit higher thermal stability but poorer specific contact resistivity than conventional Ti/Au metal stacks on ZnO.  相似文献   

3.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

4.
Ir-based electrical contacts to p-type GaN have been fabricated and characterized. Both GaN//Ni/Au/Ir/Au and GaN//Ni/Ir/Au contact structures were deposited, however, only the former produced Ohmic current-voltage characteristics. At an anneal temperature of 500 °C, the Ni/Au/Ir/Au contact had a specific contact resistance of ∼2 × 10−4 Ω cm2, comparable or superior to conventional Ni/Au contacts that are less thermally stable. Anneal temperatures above 500 °C caused the Ir-based contact to fail. Auger electron spectroscopy was used to obtain depth profiles of both types of contacts at a variety of temperatures in order to provide insight into the mechanism of Ohmic formation as well as potential reasons for failure. A comparison to other metallization schemes on p-GaN is also given.  相似文献   

5.
A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 1018 cm−3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I-V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10−6 Ω cm2 after annealing at 900 °C for 1 min in a N2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.  相似文献   

6.
Ohmic contact formation on n-GaN using a novel Ti/Al/W2B/Ti/Au metallization scheme was studied using contact resistance, scanning electron microscopy and Auger electron spectroscopy measurements. A minimum specific contact resistivity of 7 × 10−6 Ω cm2 was achieved at an annealing temperature of 800 °C. The contact resistance was essentially independent of measurement temperature, indicating that field emission plays a dominant role in the current transport .The Ti began to outdiffuse to the surface at temperatures of ∼500 °C, while at 800 °C the Al also began to intermix within the contact. By 1000 °C, the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. The contact resistance showed excellent stability for extended periods at 200 °C, which simulates the type of device operating temperature that might be expected for operation of GaN-based power electronic devices.  相似文献   

7.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

8.
We have designed a promising contact scheme to p-GaN. Au/NiOx layers with a low concentration of O in NiOx are deposited on p-GaN by reactive dc magnetron sputtering and annealed in N2 and in a mixture of O2 + N2 to produce low resistivity ohmic contacts. Annealing has been studied of NiOx layers with various contents of oxygen upon the electrical properties of Au/NiOx/p-GaN. It has been found that the Au/NiOx/p-GaN structure with a low content of oxygen in NiOx layer provides a low resistivity ohmic contact even after subsequent annealing in N2 or O2 + N2 ambient at 500 °C for 2 min.Auger depth profiles and transmission electron microscopy (TEM) micrographs reveal that while annealing in O2 + N2 ambient results in reconstruction of the initial deposited Au/NiOx/p-GaN contact structure into a Au/p-NiO/p-GaN structure, annealing in N2 brings about reconstruction into Au/p-NiO/p-GaN and Ni/p-NiO/p-GaN structures. Hence, in both cases, after annealing in N2 as well as in O2 + N2 ambient, the ohmic properties of the contacts are determined by creation of a thin oxide layer (p-NiO) on the metal/p-GaN interface. Higher contact resistivities in the samples annealed in O2 + N2 ambient are most likely caused by a smaller effective area of the contact due to creation of voids.  相似文献   

9.
Al, Au, Ti/Al and Ti/Au contacts were prepared on n-GaN and annealed up to 900 °C. The structure, phase and morphology were studied by cross-sectional transmission and scanning electron microscopy as well as by X-ray diffraction (XRD), the electrical behaviour by current-voltage measurements. It was obtained that annealing resulted in interdiffusion, lateral diffusion along the surface, alloying and bowling up of the metal layers. The current-voltage characteristics of as-deposited Al and Ti/Al contacts were linear, while the Au and Ti/Au contacts exhibited rectifying behaviour. Except the Ti/Au contact which became linear, the contacts degraded during heat treatment at 900 °C. The surface of Au and Ti/Au contacts annealed at 900 °C have shown fractal-like structures revealed by scanning electron microscopy. Transmission electron microscopy and XRD investigations of the Ti/Au contact revealed that Au diffused into the n-GaN layer at 900 °C. X-ray diffraction examinations showed, that new Ti2N, Au2Ga and Ga3Ti2 interface phases formed in Ti/Au contact at 900 °C, new Ti2N phase formed in Ti/Al contact at 700 and 900 °C, as well as new AlN interface phase developed in Ti/Al contact at 900 °C.  相似文献   

10.
The electrical and microstructural properties of the PdSi based ohmic contacts on n-InP are discussed in the research. A low specific contact resistance of 2.25 × 10−6 Ω cm2 is obtained on Au/Si/Pd/n-InP contact after rapid thermal annealing (RTA) at 450 °C for 30 s. The low contact resistance can be maintained at the order of 10−6 Ω cm2 even up to 500 °C annealing. From the Auger analysis, it is found that both the outdiffusion of In and the indiffusion of Si into the InP surface occurred at the ohmic contact sample. The formation of the Pd3Si compound lowered the barrier of the contact. The reactions between Pd and InP of the contact, forming In vacancies, and leading the doping of Si to the InP contact interface.  相似文献   

11.
The presented work describes behavior of contact structures of Ni/Ti type on 6H-SiC n-type. The best contact resistivity obtained is 3.3 × 10−4 Ω cm2. The structure showed excellent thermal stability, it was stable after being tested for 10 h at 900 °C. XRD analysis after annealing at 960 °C revealed orthorhombic Ni2Si as the dominate phase.  相似文献   

12.
Schottky barrier contact using three different metal (Zr, Ti, Cr and Pt) and Ohmic contact using Ni were made on same epitaxial growth layer of p-GaN. Measurements were carried out using current-voltage-temperature (I-V-T) in the range of 27-100°C. Under forward bias and room-temperature (RT), the ideality factors (η) were determined to be 2.38, 1.82, 1.51 and 2.63, respectively, for Zr, Ti, Cr and Pt. The Schottky barrier height (SBH) and effective Richardson coefficient A** were measured through modified Norde plot as one of the analysis tools. Barrier heights of 0.84, 0.82, 0.77 and 0.41 eV for Zr, Ti, Cr and Pt, respectively, were obtained from the modified Norde plot. Schottky barrier heights of Zr, Ti, or Cr/p-GaN were also measured through activation energy plot, and determined to be in the same range (∼0.87 eV) and Pt at 0.49 eV. These results indicate that the Fermi level seems to be pinned due to the value of slope parameter (S) was very low (S = −0.25).  相似文献   

13.
Transfer length method (TLM) structures were fabricated to characterize the Ni/Au/AuGe-n+-GaAs contacts for quantum dot infrared photodetector (QDIP). Low specific contact resistance of the order of 10−5 Ω cm2 indicates formation of a good Ohmic contact. The current-voltage measurements show that current transport is linear with no significant interfacial modification due to alloying of the contact metal. Low contact resistance makes this scheme suitable for the fabrication of heterostructure QDIP devices.  相似文献   

14.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

15.
Ni, Ni2Si and Pd contacts were prepared on n-type 4H-SiC and annealed in the temperature range of 750-1150 °C. The annealed contacts were analyzed before and after acid etching, and different features were found in unetched and etched contacts. Carbon left on the SiC surface after the acid etching of Ni2Si contacts annealed at 960 °C was highly graphitized. In nickel contacts, the graphitization of interface carbon began at 960 °C and increased after annealing at higher temperatures. In palladium contacts, the onset of the interface carbon graphitization was observed after annealing at 1150 °C. For all three types of metallization, the minimal values of contact resistivity were achieved only when the sharp first-order peak at 1585 cm−1 and distinct second-order peak at ∼2700 cm−1 related to the presence of graphitized carbon were detected by Raman spectroscopy after the acid etching of contacts. The properties of unannealed secondary contacts deposited onto etched primary contacts were similar to the properties of the primary contacts unless carbon was selectively etched. The results show that ohmic behavior of Ni-based and Pd contacts on n-type SiC originates from the formation of graphitic carbon at the interface with SiC.  相似文献   

16.
The use of a silicon interface pre-treatment to produce low resistance Ohmic nickel contacts to 4H-SiC, circumventing the need for contact post annealing, is reported. The effects of two different SiC pre-metal deposition surface preparation techniques: RCA cleaning (control sample) and a silicon interlayer pre-treatment (SIP), are discussed. Electrical characterization of contacts on treated surfaces, using circular transfer length measurements (CTLM), revealed that contacts to RCA cleaned samples were Schottky in nature, unless annealed at temperatures greater than 700 °C. In contrast, contacts formed on SIP SiC surfaces exhibited Ohmic behaviour directly after fabrication, without the need for post metallisation annealing. Average contact resistances as low as 1.3E−05 Ω cm2 have been recorded for SIP samples. This fabrication process has distinct technological advantages compared to standard techniques for forming Ohmic contacts to SiC. To consolidate our findings the chemical and electrical nature of the SIP nickel-SiC interface, as it was sequentially formed and annealed, was examined using X-ray photoelectron spectroscopy (XPS). Based on these results, a model is proposed to explain the as-deposited Ohmic contact nature of the SIP sample.  相似文献   

17.
We investigated the electrical properties of Cr(30 nm)/Al(200 nm) contacts to N-polar n-type GaN for high-performance vertical light-emitting diodes and compare them with those of Ti(30 nm)/Al(200 nm) contacts. Before annealing, both the samples show ohmic behaviors with a contact resistivity of 1.9-2.3 × 10−4 Ωcm2. Upon annealing at 250 °C for 1 min in N2 ambient, the Ti/Al contacts become non-ohmic, while the Cr/Al contacts remain ohmic with a contact resistivity of 1.4 × 10−3 Ωcm2. Based on X-ray photoemission spectroscopy and secondary ion mass spectrometry results, ohmic formation and degradation mechanisms are briefly described and discussed.  相似文献   

18.
The electrical properties of different metal-CdZnTe contacts by sputtering deposition method are investigated by current-voltage. The results show that Au is the most suitable electrical contact materials, which forms the nearly ideal Ohmic contact with high resistivity p-CdZnTe crystals. Ohmicity coefficient b is the closest to 1 after 10 min annealing at 333 K, which is analyzed by current-voltage characteristics. XPS analyses show that Au atoms diffuse into CdZnTe during annealing process and Cd and Te atoms diffuse into Au contact. Diffused Au atoms do not form any compound with any element in CdZnTe crystal. PL spectra results of Au deposition on CdZnTe crystals at 10 K show that the inter-diffused donors [Au]3+ recombine with acceptors [VCd]2− during sputtering process. Meanwhile, the intensity of (Dcomplex) peak of with Au contact increases sharply in comparison with un-deposited CdZnTe crystal and donor [Au]3+ and can compensate Cd vacancy [VCd]2− wholly.  相似文献   

19.
The contacts of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au films deposited on n-GaN were studied by current–voltage (I–V) and transmission-line-method measurements. The effect of annealing temperature on specific contact resistivity has been investigated by changing the annealing temperature from 400 to 900 °C. Ti/Al/Au and Ti/Al/Ni/Au films were superior to the bilayer (Ti/Au) in ohmic contact characteristics and thermal stability. The Ti/Al/Ni/Au composite showed the best thermal stability due to the fact that Ni plays a more important role than the alloy of Ti/Al in preventing the interdiffusion of Ti, Al, and Au. The lowest contact resistivity (10-7cm2) to n-GaN was obtained for the Ti/Al/Ni/Au sample by short-time/high-temperature annealing. The formation mechanism of ohmic contacts to n-GaN is also discussed. PACS 73.40.Cg; 73.61.Ey  相似文献   

20.
The fabrication of high reflective Ni/Ag/(Ti, Mo)/Au Ohmic contacts for flip-chip light-emitting diode (FCLED) are proposed and considered, Ni/Ag/Au Ohmic contacts are also fabricated to compare their resulting reflectivities. From secondary ion mass spectrometry (SIMS) depth profiles, it indicates that the Au in-diffusion occurs in Ni/Ag/Au contacts after annealing. It is considered that Au in-diffusion, which is intermixed with Ag, Ni and GaN in Ni/Ag/Au contacts after annealing, is responsible for the resulting low reflectance (63% at the wavelength of 465 nm). To avoid Au in-diffusion and enhance the reflectivity, a diffusion barrier metal (Ti or Mo) between Ni/Ag and Au is fabricated and examined. It is demonstrated and found that an insertion of diffusion barrier metal of Ti enables to block Au diffusion effectively and also improve the reflectivity significantly, up to 93%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号