首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper nanoparticles (Cu NPs) were prepared by different chemical methods possessing different sizes. While, silver nanoparticles (Ag NPs) were prepared by borohydride reduction method. The influences the changes in sizes of Ag NPs and Cu NPs were demonstrated by the absorption spectra. When Ag NPs and Cu NPs irradiated with 193 and 308 nm excimer laser, respectively; the maximum absorption decreased as the number of pulses increased up to 10 thousands pulse; due to the size reduction. The TEM photography gives good criteria about the size reduction process. Moreover, the mechanism of photofragmentation was described.  相似文献   

2.
We have investigated modifications of sapphire (0 0 0 1) surface with and without coating, induced by a single laser pulse with a 1054 nm wavelength, 2.2 s duration, 7.75 mm spot and energy of 20-110 J. A holographic optical element was used for smoothing the drive beam spatially, but it induced small hotspots which initiated damage on the uncoated and coated surfaces. The individual damage effects of hotspots became less pronounced at high fluences. Due to high temperature and elevated non-hydrostatic stresses upon laser irradiation, damage occurred as fracture, spallation, basal and rhombohedral twinning, melting, vitrification, the formation of nanocrystalline phases, and solid-solid phase transition. The extent of damage increased with laser fluences. The formation of regular linear patterns with three-fold symmetry ( directions) upon fracture was due to rhombohedral twinning. Nanocrystalline -Al2O3 formed possibly from vapor deposition on the coated surface and manifested linear, triangular and spiral growth patterns. Glass and minor amounts of -Al2O3 also formed from rapid quenching of the melt on this side. The - to -Al2O3 transition was observed on the uncoated surface in some partially spalled alumina, presumably caused by shearing. The nominal threshold for laser-induced damage is about 47 J cm−2 for these laser pulses, and it is about 94 J cm−2 at the hotspots.  相似文献   

3.
Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm2 and 5000 pulses/cm2 in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products.  相似文献   

4.
Highly luminescent singles of Ag sol with gradual changes were detected when adjusting the granularity and concentration of particles. It can be deduced that these Ag sols, composed of a large amount of silver nanoparticles and clusters, may have their surface energy bands alterable, which might be caused by the interactions between particles. A model that describes the shift of energy band is proposed, and it can be understood as the hybridization of elementary plasmons when interactions occur between particles. Besides, both hybridization and absorption-rescattering mechanisms were proposed to explain the changeable phenomena of photoluminescence with different concentrations.  相似文献   

5.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids were investigated at 397.5, 532, and 795 nm. The TEM and spectral measurements have shown temporal dynamics of size distribution of Ag nanoparticles in solutions. The thermal-induced self-defocusing dominated in the case of high pulse repetition rate as well as in the case of nanosecond pulses. In the case of low pulse repetition rate, the self-focusing (γ = 3 × 10−13 cm2 W−1) and saturated absorption (β = −1.5 × 10−9 cm W−1) of picosecond and femtosecond radiation were observed in these colloidal solutions. The nonlinear susceptibility of Ag nanoparticles ablated in water was measured to be 5 × 10−8 esu (at λ = 397.5 nm).  相似文献   

6.
We performed laser ablation of a silver plate in polyvinylpyrrolidone (PVP) aqueous solutions to prepare silver nanoparticles. Secondary laser irradiation onto the prepared colloidal solutions was also carried out. It was revealed that the formation efficiency was increased by addition of PVP as well as the stability of nanoparticles. The result of shadowgraph measurements suggested that the increased ablation efficiency by PVP is attributable to increased secondary etching efficiency by the solvent-confined plasma toward the silver plate. On the other hand, the size decrease of the nanoparticles by addition of PVP was more remarkable during the secondary irradiation process than in the laser ablation (nanoparticle preparation) process. This result indicates that emitted materials interact less sufficiently with PVP molecules in the laser ablation process than in the secondary laser irradiation process.  相似文献   

7.
The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.  相似文献   

8.
The growth of silver nanoparticles synthesized at 27±1 °C from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution has been assessed using a methodology that combines theoretical calculations based on the Mie Theory with experimental UV/VIS spectra and average particle size determinations from TEM micrographs. A plot of experimental maximum absorbance times bandwidth as a function of the corresponding average particle radius cube gives a curve with two linear portions of significantly different slopes, suggesting that formation of silver particles takes place during two distinct periods. These results and theoretical calculations seem to indicate that particle formation involves a long nucleation-growth period (about 13 h) during which the number of particles increases, followed by growth only, with a constant number of particles. The ratio of theoretical and experimental maximum absorbance indicates that even after 67 h of reaction, only 45% of the initial Ag(I) species has been transformed into silver nanoparticles.  相似文献   

9.
A new route for silver electroless deposition on Si(1 0 0) substrate is developed based on the galvanic displacement process. The basic electroless bath contains NaF and AgNO3 with different concentrations. The morphologies of electrolessly deposited silver nanostructures, including silver nanowires and nanoparticles, are strongly dependent on the electrolyte composition. Adding an excess dosage of polyvinylpyrrolidone into the basic electrolyte yields final silver films of porous structures composed by multitudinous Ag nanoparticles. The porous silver films possess the surface hydrophobic property after the modification with n-dodecanethiol. Unidirectional wetting and spreading of a water droplet are also demonstrated on the patterned porous Ag films.  相似文献   

10.
We report an extracellular synthesis of silver nanoparticles (SNPs) by Phoma glomerata (MTCC-2210). The fungal filtrate showed rapid synthesis in bright sunlight. The Fourier transform infrared spectroscopy (FTIR) revealed the presence of a protein cap on the silver nanoparticle, which leads to increase stability of SNP in the silver colloid. X-ray diffraction (XRD) analysis showed the number of Bragg's reflection, which are due to the face centered cubic structure of the crystalline SNPs. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), nanoparticle tracking and analysis (NTA) demonstrated the synthesis of polydispersive and spherical SNPs. Energy dispersive X-ray spectroscopy (EDX) was used to confirm the elemental composition of the sample and Zeta potential measurement was carried out to determine the stability of mycofabricated SNPs.The alkaline pH, room temperature, sunlight demonstrated optimum synthesis. Apart from the physical conditions, concentration of silver nitrate and amount of fungal filtrate affects the mycofabrication process. The study of cultural and physical parameters during the mycofabrication of SNPs by P. glomerata will be helpful in order to increase the yield of mycofabricated SNPs of desired shape and size. The process of mycofabrication of SNPs by P. glomerata was found to be eco-friendly, safe and cost-effective nature.  相似文献   

11.
The geometry and the vibrational properties of missing row reconstructed O/Cu(0 0 1) and O/Ag(0 0 1) surfaces are investigated by means of density functional theory and density functional perturbation theory, using the local density and the generalized-gradient approximations. Our results predict very similar structural and vibrational properties for the two reconstructed surfaces. In the case of copper our calculations reproduce quite accurately the experimental results, while for the missing row reconstructed O/Ag(0 0 1) surface the agreement between theory and experiment is less satisfactory.  相似文献   

12.
The metal-enhanced fluorescence is measured with different thickness of emission film. Silver nanoparticles are immobilized on glass slide by chemical self-assembly method. Rhodamine B molecules are dispersed in the polymer matrix of Poly(methyl methacrylate) (PMMA), then spin coated on prepared silver particles substrate with different thickness from 15 nm to 70 nm. The enhanced fluorescence is observed depending on the thickness of emission film since the average distance between rhodamine B molecules and silver nanoparticles is altered by the PMMA matrix. The 5-fold enhancement is attained. The experiment was explained qualitatively by an integral fluorescence enhancement.  相似文献   

13.
The thermo-optical properties of colloidal silver nanoparticles (AgNPs) are investigated under a low power laser irradiation at 532 nm. Colloidal AgNPs are synthesized by nanosecond pulsed laser ablation of a pure silver plate in distilled water. The morphology and size of the AgNPs are determined by transmission electron microscopy. Closed Z-scan measurements reveal that nonlocal thermo-optic process is responsible for the nonlinear refractive index of colloid containing different concentrations of silver nanoparticles. The Z-scan behavior of the nanoparticle samples has been investigated based on a nonlocal thermo-optic process and it is shown that the aberrant thermal lens model is in excellent agreement with the experimental results. Z-scan measurement fits have allowed the values of nonlinear refractive index (n2) and thermo-optic coefficients (dn/dt) to be determined at different concentrations of silver nanoparticles. Large enhancement factors were measured for values of n2 and dn/dt of the colloids at higher silver nanoparticle volume fraction. Our results suggest that nonlocal thermal nonlinear processes will play an important role in the development of photonic applications involving metal nanoparticle colloids.  相似文献   

14.
A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold.  相似文献   

15.
Density functional theory calculations are performed to investigate the C diffusion through the surface and subsurface of Ag/Ni(1 0 0) and reconstructed Ag/Ni(1 0 0). The calculated geometric parameters indicate the center of doped Ag is located above the Ni(1 0 0) surface owing to the size mismatch. The C binding on the alloy surface is substantially weakened, arising from the less attractive interaction between C and Ag atoms, while in the subsurface, the C adsorption is promoted as the Ag coverage is increased. The effect of substitutional Ag on the adsorption property of Ni(1 0 0) is rather short-range, which agrees well with the analysis of the projected density of states. Seven pathways are constructed to explore the C diffusion behavior on the bimetallic surface. Along the most kinetically favorable pathway, a C atom hops between two fourfold hollow sites via an adjacent octahedral site in the subsurface of reconstructed Ag/Ni(1 0 0). The “clock” reconstruction which tends to improve the surface mobility, is more favorable on the alloy surface because the c(2 × 2) symmetry is inherently broken by the Ag impurity. As a consequence, the local lattice strain induced by the C transport is effectively relieved by the Ag-enhanced surface mobility and the C diffusion barrier is lowered from 1.16 to 0.76 eV.  相似文献   

16.
The ground state of the Ag/Si(1 1 1)-(3 × 1) has been investigated by low temperature scanning tunneling microscopy (STM) and density-functional theory. The Fourier transform of the STM image reveals a (6 × 2) reconstruction, which is theoretically found to yield a reconstruction with lower energy than the (3 × 1). The most stable (6 × 2) structural model leads to excellent correspondence between experimental and simulated STM images, and reveals a dimerization of the silver atoms in the channels formed by neighbouring honeycomb Si chains.  相似文献   

17.
Grazing-incidence pumped Ni-like Sn X-ray laser media at 11.9 nm (4d-4p, J = 0-1) is modelled using code EHYBRID and a post-processor code. The required atomic data are obtained using the Cowan code. In this study the pre-formed plasma is pumped on longitudinal direction with a grazing angle. Detailed simulations were performed to optimize the driving laser configurations. Relatively high gain is produced for the Ni-like Sn X-ray laser at 11.9 nm with long pre-pulse and short main pulse drive energy of only 100 mJ on 4 mm slab targets. Using low intensity pre-pulse prior to long pulse decreases the electron density gradient. X-ray resonance lines between 13 and 25 Å emitted from tin plasma have been simulated using post-processor coupled with EHYBRID. The ratio of these resonance lines can be used to measure electron temperature of the laser produced Sn plasma.  相似文献   

18.
A heated Ag+-doped glass is subjected to an external constant uniform electric field (Eo > 250 V/cm) parallel to its surface. Absorption spectra studies by linear polarized light imply the induction of a linear dichroism in the samples, after the above-mentioned thermo-electrical process. It is found that the increase in the temperature (400 °C ≤ T ≤ 600 °C), results in the formation of neutral silver multimers and clusters on the samples. Dichroism is the result of simultaneous application of the steady uniform electric field and heating. That is, the process aligns the produced silver nanoparticles along the applied electric field (Eo) during the aggregation of silver nano-clusters via dipole-dipole interaction, leading to the formation of chain-like conductive structures.  相似文献   

19.
The first stages of the growth of silicon on Ag(0 0 1) at moderate temperatures start by the formation of a p(3 × 3) superstructure, which continuously evolves with increasing coverage toward a more complex superstructure. In this paper, the atomic arrangement of the p(3 × 3) and of the “complex” superstructure has been investigated using scanning tunnelling microscopy, surface X-ray diffraction and low energy electron diffraction. The atomic model retained for the p(3 × 3) reconstruction consists in four silicon atoms (tetramers) adsorbed near hollow and bridge sites of the top most Ag(0 0 1) surface layer. For higher coverages, i.e., when the “complex” superstructure starts to develop, the silicon overlayer forms periodic stripes, most probably bi-layers, with a graphitic like structure.  相似文献   

20.
T. Brandstetter 《Surface science》2009,603(24):3410-1029
The interplay between chemisorbed oxygen and deposited Ag on the Cu(1 1 0) surface has been studied by scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM). The Cu-CuO stripe phase formed on the clean Cu(1 1 0) surface upon oxygen chemisorption at 660 K is partly dissolved by Ag deposition at 300 K. Upon annealing, however, a phase separation is observed, where the Cu-O compounds agglomerate into large CuO islands and the Ag is located in between. Also a strong preference for the Ag to attach to step bunches is observed. Especially on the fully (2×1)O reconstructed Cu(1 1 0) surface, all the deposited Ag is found at the step bunches giving rise to a contrast in PEEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号