首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contactless electroreflectance (CER) spectroscopy has been applied to investigate the optical transitions in Ga(In)NAs/GaAs quantum well (QW) structures containing Sb atoms. The identification of the optical transitions has been carried out in accordance with theoretical calculations which have been performed within the framework of the effective mass approximation. Using this method, the bandgap discontinuity for GaN0.027As0.863Sb0.11/GaAs, Ga0.62In0.38As0.954N0.026Sb0.02/GaAs, and Ga0.61In0.39As0.963N0.017Sb0.02/GaN0.027As0.973/GaAs QW structures has been determined. It has been found that the conduction-band offset is ∼50 and ∼80% for GaN0.027As0.863Sb0.11/GaAs and Ga0.62In0.38As0.954N0.026Sb0.02/GaAs QWs, respectively. It corresponds to 264 and 296 meV depth QW for electrons and heavy-holes in GaN0.027As0.863Sb0.11/GaAs QW; and 520 and 146 meV depth QW for electrons and heavy-holes in Ga0.62In0.38As0.954N0.026Sb0.02/GaAs QW. In the case of the Ga0.61In0.39As0.963N0.017Sb0.02/GaN0.027As0.973/GaAs step-like QW structure it has been shown that the depth of electron and heavy-hole Ga0.61In0.39As0.963N0.017Sb0.02/GaN0.027As0.973 QW is ∼144 and ∼127 meV, respectively.  相似文献   

2.
The pressure dependence of optical transitions in Ga0.64In0.36As/GaAs and Ga0.64In0.36N0.01As0.99/GaAs single quantum well (SQW) structures were studied in photoreflectance (PR) spectroscopy. In order to apply high hydrostatic pressure, up to ∼11 kbar, the liquid-filled clamp-pressure cell with a sapphire window for optical access has been adopted in the PR set-up with the so called ‘bright configuration’. It has been found that the linear hydrostatic pressure coefficient for the ground state transition are equal to 8.6 and 7.3 meV/kbar for the GaInAs/GaAs and GaInNAs/GaAs SQWs, respectively. This result shows that the incorporation of only 1% of N atoms into GaInAs/GaAs leads to ∼15% decrease in the pressure coefficient. In addition, a non-linearity in the pressure dependence of the ground state transition has been resolved for the GaInNAs/GaAs SQW.  相似文献   

3.
Photoreflectance (PR) measurements are performed as a function of temperature on self-organized InAs/InP(0 0 1) quantum sticks (QSs) grown by solid-source molecular beam epitaxy. With a very weak excitation power, three PR transition energies are arising and associated with the ground state and two excited states, respectively, in good agreement with both photoluminescence (PL) and PL excitation measurements. The temperature dependence of the PR transition energies is in good agreement with the Bose-Einstein behavior.From PL analysis of these InAs/InP QSs, the ground state was assumed to be partially filled because of the residual n-type doping of the InP barrier layers. The PR spectra analysis allows us to further confirm this assumption, considering mainly the relative PR intensity of the different transitions, as well as the Franz Keldysh oscillations (FKO) above the InP bandgap.  相似文献   

4.
In0.53Ga0.47As/In0.53Ga0.23Al0.24As quantum wells (QWs) of various widths have been grown by molecular beam epitaxy on the InP substrate and investigated by electromodulation spectroscopy, i.e. photoreflectance (PR) and contactless electroreflectance (CER). The optical transitions related to the QW barrier and the QW ground and excited states have been clearly observed in PR and CER spectra. The experimental QW transition energies have been compared with theoretical predictions based on an effective mass formalism model. A good agreement between experimental data and theoretical calculations has been observed when the conduction band offset for the In0.53Ga0.47As/In0.53Ga0.23Al0.24As interface equals 60%. In addition, it has been concluded that the conduction band offset for the In0.53Ga0.23Al0.24As/InP interface is close to zero. The obtained results show that InGa(Al)As alloys are very promising materials in the band gap engineering for structures grown on InP substrate.  相似文献   

5.
The set of material parameters for quantum well structures is of immense importance because of its usage in the development of theories, extraction of experimental data, and the proper design of devices. In particular, the (Al,In)GaAs/GaAs, InGaAs/InP and (In,Ga)AlAs/InGaAs quantum well systems have drawn a lot of attention. They form the center core of materials used for fundamental basic research and device applications. Despite the presence of some review articles and reference books, there is a lack of clear reference on the accurate determination of the material parameters for quantum wells. This review aims to provide a comprehensive and systematic set of material parameters for the above quantum well systems grown on (1 0 0) substrates at two different temperatures, below 10 K and at around 300 K. The parameters are compared against experimental data from various fabrication sources, measurement techniques, and quantum well structures. The values presented here serve as an accurate and up to date source of reference.  相似文献   

6.
The energy spectrum of electrons in narrow band gap semiconductor nanocrystals which have position dependence band gap in an external non-uniform electric field which compensate the position dependence of the band edge of the valence band potential are studied theoretically taking into account the non-parabolicity of electrons in dispersion laws. The exact solutions of the Kane equations with strong spin–orbital interaction are determined with and without magnetic field via the band gap changes as a function of the position. The position dependence of the band gap is taken parabolically.  相似文献   

7.
A non-local model potential has been developed for nitrogen and used to calculate the energy band structures of GaN and A1N. The resulting band structures are found to be in good agreement with optical data for these materials.  相似文献   

8.
The influence of chemical etching with HF on the nature of the surface of amorphous Ni59Nb40Pt1−xSnx alloys has been studied in situ by electrolyte electroreflectance (EER) and ex situ by X-ray photoelectron spectroscopy (XPS). The EER spectrum of the untreated alloy in 0.5 M H2SO4 shows a bipolar band, which disappears after the HF treatment yielding a structureless EER spectrum similar to that of Pt, but reappears after several hours in the 0.5 M H2SO4 electrolyte. This process of dissolution by HF of an oxide species and its reappearance after a few hours cannot be followed by XPS, since the time interval between sample withdrawal from the electrolyte and actual measurement is of a few hours as well. XPS spectra showed the presence of metallic Nb before and after the HF treatment, and that niobium pentoxide was the main species in the as-quenched alloy, but that after treatment with HF it became a minor component, the main one being NbO. The main effect of the HF treatment is to produce a platinum enrichment of the surface, as unequivocally determined by cyclic voltammetry, XPS and EER. After Ar sputtering for 9 min the XPS spectrum of the untreated alloy showed metallic Nb only, while in the HF-treated alloy the peaks of metallic Nb were swamped by those of NbO and some Nb2O5. We interpret this difference as being due to the formation by the HF attack of a porous Nb film which becomes oxidized in the electrolyte and/or during transfer to the spectrometer, and so thick that it is not eliminated by Ar sputtering for 9 min.  相似文献   

9.
An optically transparent microstrip patch antenna is designed on photonic bandgap structures and its radiation characteristics are computed and analyzed in the visible spectrum region. The proposed antenna consists of indium tin oxide, a transparent conducting material used both as a radiating patch and a ground plane separated by the 5 μm thin glass substrate. The introduction of periodic cylindrical air cavity structures in the glass substrate leads to the formation of photonic band gap. The patch thickness is carefully selected based on the analysis of the optical transmission coefficient with respect to patch thickness. The effective dielectric constant of the photonic band gap loaded glass substrate is computed using the effective medium approach. The refractive index of the proposed antenna is presented and discussed. The radiation efficiency of the antenna is shown to improve significantly due to insertion of proposed photonic band gap structures. The proposed design has yielded a bandwidth of 2–2.3 THz for a return loss (S11) of less than −15dB and achieved a peak gain of 4.97dB at 2.27 THz.  相似文献   

10.
Tailoring thermoelectric materials for specific designs and applications has been gaining momentum during past three decades. Initially confined to conventional (bulk) framework an entirely new scenario emerged with inclusion of low-dimensional structures in the scheme of things. The paper examines the effect of size reduction on phonon and electron properties in two-dimensional (quantum well) structures with an aim to maximize thermoelectric performance. The formulation has been applied to silicon-germanium quantum wells with well width ranging from 50–500 ? aimed at finding best alloy combination for thermoelectric applications.  相似文献   

11.
In this study, a generalized and easy to use method based on Hill's equation and chain matrix concept is used to analyze the electromagnetic wave propagation in stratified dielectric and inhomogeneous media with arbitrary profiles.Numerical simulations are performed to compute the reflection and transmission of several Electromagnetic Bandgap (EBG) structures for various permittivity profiles and given polarization as well as incidence angles of driving fields.Multilayer structures are analyzed and optimized to enhance their selectivity performances. Obtained results agree excellently well with other published data.  相似文献   

12.
Internal spin-singlet and spin-triplet transitions of charged excitons X in magnetic fields in quantum wells have been studied experimentally and theoretically. The allowed X transitions are photoionizing and exhibit a characteristic double-peak structure, which reflects the rich structure of the magnetoexciton continua in higher Landau levels (LLs). We discuss a novel exact selection rule, a hidden manifestation of translational invariance, that governs transitions of charged mobile complexes in a magnetic field.  相似文献   

13.
Vibrational spectroscopy of InAs and AlAs quantum dot structures   总被引:1,自引:0,他引:1  
In this paper we present an experimental comparative study of InAs/AlAs periodical structures with InAs and AlAs quantum dots (QDs) by means of infrared and Raman spectroscopies. The first observation of optical phonons localized in InAs and AlAs QDs using infrared spectroscopy is demonstrated. Confined optical phonon frequencies of the QDs measured by means of Raman scattering are compared with those deduced from the analysis of infrared spectra performed in the framework of the dielectric function approximation.  相似文献   

14.
We discuss the spectral lineshapes of reflectance and modulated reflectance (MR) measurements on optoelectronic device structures such as epi-layers, quantum wells (QWs), vertical-cavity surface emitting-lasers (VCSELs) and resonant-cavity light-emitting diodes (RCLEDs). We consider the various methods for the extraction of built-in electric fields and band-gap energies from Franz-Keldysh oscillations (FKO), using the example of a tensilely strained InGaAs QW system, whose InGaAsP barriers yield strong FKO. We describe how critical point transition energies can be easily obtained by eye from Kramers-Kronig (KK) transforms of low field or QW modulation spectra, using the example of the modulated transmittance spectra of dilute-nitrogen InGaAsN p-i-n structures. We also discuss how the ordinary reflectivity spectrum, usually acquired at the same time as the MR signal, may also be exploited to extract layer thicknesses and compositions, and information about the active QW absorption spectrum in VCSEL and RCLED structures.  相似文献   

15.
16.
Il Nuovo Cimento D - The spectra of transmission and reflection of synthetic opal which has 3-dimensional periodic structure were measured at different orientations of incident beam relative to the...  相似文献   

17.
We investigate the electric field effect on the ground state (GS), the first-excited state (FES) and the excitation energies of a strong-coupled polaron in an asymmetric Gaussian potential (AGP) quantum well (QW) by using a variational method of the Pekar type (VMPT). By employing the quantum statistics theory (QST), we also study the temperature effects on the state energies (SE). It is found that the SE of polaron are an increasing function of temperature. The polaron's SE are decreasing functions of electric field, but the excitation energy is an increasing one.  相似文献   

18.
Within the effective-mass approximation, we have investigated the influence of a strong magnetic field on the ground state binding energy and the photon energy dependence of the photoionization cross-section of a shallow donor impurity in a quasi-one-dimensional rectangular quantum wire with infinite and finite potential barriers, using a variational approach. It is found that the binding energy and the photoionization cross-section as a function of photon energy were drastically dependent on the sizes of the wire, the potential well heights and the applied magnetic field.  相似文献   

19.
We have applied Engel-Vosko exchange energy within density functional theory, to calculate the electronic structure and the optical properties of BaX (X = Te, Se, and S) compounds via full potential linearized augmented plane wave method. We have found that this improves the band gap results comparing to our previous work in which we had made use of Perdew et al. exchange energy functional. We have also calculated the dielectric constant of these compounds, using both Perdew et al. and Engel-Vosko schemes. It is shown that Engel-Vosko exchange energy functional leads to a better result. We have also reported the effect of spin-orbit coupling on the results.  相似文献   

20.
In this study, simultaneous effects of hydrostatic pressure, temperature and magnetic field on the linear and nonlinear intersubband optical absorption coefficients (OACs) and refractive index changes (RICs) in asymmetrical Gaussian potential quantum wells (QWs) are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy eigenvalues and their corresponding eigenfunctions of the system are calculated with the differential method. Our results show that the position and the magnitude of the resonant peaks of the nonlinear OACs and RICs depend strongly on the hydrostatic pressure, temperature and external magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号