首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices.  相似文献   

2.
We investigated carbon monoxide (CO) adsorption and desorption behaviors on 0.1-nm-, 0.15-nm-, and 0.3-nm-thick-Pd-deposited Cu(1 1 0) surfaces using infrared reflection absorption (IRRAS) and temperature-programmed desorption (TPD) spectroscopic methods. CO was exposed to the 0.1-nm-thick-Pd/Cu(1 1 0) surface at the substrate temperature of 90 K. The IR band attributable to CO bonded to Cu atoms emerged at 2092 cm−1: the band was located at 2100 cm−1 at saturation coverage, with a shoulder at 2110 cm−1. In addition to these bands, weak absorptions attributable to the PdCO bonds appeared at 2050 and 1960 cm−1. With increasing Pd thickness, the Pd related-bands became increasingly prominent. Particularly at the early stage of exposure, the band at 2115 cm−1 became visible. The band at 2117 cm−1 dominated the spectra all through the exposures for the 0.3-nm-thick-Pd surface. The TPD spectra of the surfaces showed two remarkable features at around 220-250 and 320-390 K, ascribable ,respectively, to CuCO and PdCO. The desorption peaks shifted to higher temperatures with increasing Pd thickness. Based on the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the Pd/Cu(1 1 0) surfaces.  相似文献   

3.
Room temperature Raman scattering measurements of samples of the (1−x)GeS2-xIn2S3 (x=0.00-0.35) system have been conducted together with the FTIR transmission spectra of partial samples. Based on the Raman scattering and FTIR transmission spectra of the prepared defect spinel polycrystalline In2S3, the additional peaks at 306 and 245 cm−1 were ascribed to the local symmetric stretching vibration of InS4 tetrahedra and InS6 octahedra, respectively. According to the Raman scattering spectral evolution of the Ge-In sulfide glasses, the microstructure of the studied glasses was considered to be that S3Ge-GeS3 and S3In-InS3 ethane-like units originated from the sulfur deficient with the addition of In2S3 are homogeneously dispersed in a disordered polymer network formed by GeS4, InS4 tetrahedra and a small quantity of InS6 octahedra interconnected by sulfur bridges.  相似文献   

4.
We have presented a theoretical calculation of the differential cross section (DCS) for the electron Raman scattering (ERS) process associated with the bulk-like longitudinal optical (LO) and interface optical (IO) phonon modes in semiconductor quantum dots (QDs). Electron states are considered to be confined within the QDs. We consider the Fröhlich electron-phonon interaction in the framework of the dielectric continuum approach. We study selection rules for the processes. Some singularities in the Raman spectra are found and interpreted. A discussion of the phonon behavior for QDs with large and small size is presented. The numerical results are also compared with that of experiments.  相似文献   

5.
In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium.  相似文献   

6.
Raman scattering and photoluminescence (PL) studies on milled PbTiO3 are presented in this paper. The results suggest that the visible PL emission could be related to both the localized states in the interface between the amorphous layer and the crystalline core and the amorphous layer itself. The Raman spectrum of PbTiO3 milled for a long time showed the vibrational density of states, and a detailed analysis of the soft mode allowed us to conclude that the PbTiO3 crystalline core did not experience any structural phasetransition. Received: 2 February 2001 / Accepted: 23 July 2001 / Published online: 17 October 2001  相似文献   

7.
In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C60 after surface functionalization.  相似文献   

8.
Raman scattering from oriented single crystals of BaFCl was recorded at various temperatures from 20 to 1073 K for the first time. The Raman spectra, corrected for phonon population, were fitted to the sum of four Lorentzian peaks. The peak frequencies and full width at half maximum (FWHM) of the peaks were obtained from the fit. The FWHM is accounted for by cubic and quartic anharmonic processes. The quartic anharmonicity of the mode increases with the mode frequency. The quartic anharmonicity of the fluorine mode is exceptionally high. The peak frequencies decrease linearly with the increasing temperature. Fluorine mode frequencies decrease more than the internal mode frequencies do. The LO-TO splitting of the fluorine modes and that of the internal modes increases with temperature indicating the increase of the ionic bonding character. The results are discussed. Received: 12 May 1997 / Accepted: 25 July 1997  相似文献   

9.
Surface modification of doped ZnO thin films   总被引:1,自引:0,他引:1  
Effects of photo-assisted electrodeless and ion RF-sputter etching on the structural and optical properties of sputtered ZnO:Al thin films were investigated. Photo-assisted electrodeless etching was appropriate for getting “smooth” surfaces and ion RF-sputter etching by high power has significantly modified the surface roughness with an increase of the light diffuse transmittance.  相似文献   

10.
Raman spectroscopic features of 1-dodecene are studied in a moissanite anvil cell up to 3.0 GPa at 21℃. Our data indicate that 1-dodecene is chemically stable under the experimental condition because no new Raman peaks can be observed. However, two significant discontinuities in the plots of Raman shift versus pressure indicate two phase transitions of 1-dodecene. One is liquid~olid transition at pressure of about 500 MPa, the other is solid-solid phase transition at pressure from 1300 to 1550 MPa. The latter is considered to be related to the orientational change of the plane structure of ethylene. A rudimentary phase diagrams for 1-dodecene, n-pentane, n-hexane are proposed based on the results and previous data.  相似文献   

11.
Silver selenide thin films were grown on silicon substrates by the solid-state reaction of sequentially deposited Se and Ag films of suitable thickness. Transmission electron microscopy and particle-induced X-ray emission studies of the as-deposited films showed the formation of single phase polycrystalline silver selenide from the reaction of Ag and Se films. Atomic force microscopy images of the as-deposited and films annealed at different temperatures in argon showed the film morphology to evolve into an agglomerated state with annealing temperature. The results indicate that when annealed above 473 K, silver selenide films on silicon become unstable and agglomerate through holes generated at grain boundaries.  相似文献   

12.
Sword-like (diameter ranging from 40 nm to 300 nm) and needle-like zinc oxide (ZnO) nanostructures (average tip diameter ∼40 nm) were synthesized on annealed silver template over silicon substrate and directly on silicon wafer, respectively via thermal evaporation of metallic zinc followed by a thermal annealing in air. The surface morphology, microstructure, chemical analysis and optical properties of the grown samples were investigated by field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis, room temperature photoluminescence and Raman spectroscopy. The sword-like ZnO nanostructures grown on annealed silver template are of high optical quality compared to needle-like ZnO nanorods for UV emission and show enhanced Raman scattering.  相似文献   

13.
After briefly recalling the d + s model valid for some anisotropic high T c superconductors, we present a theory of electronic Raman spectra in that model and then compare it with new experimental data obtained for an overdoped Y123 single crystal. The d + s model appears to describe satisfactorily the experimental results, indicating a possible doping dependence of the mixing ratio. We note that the Raman spectrum of the overdoped Bi2212 could also be accounted for by the d + s superconductivity model. The case of Hg1212 (or Hg1223) is reexamined. It appears that the spontaneous breakdown of d-wave symmetry may be rather universal in high T c cuprates. Received: 3 March 1998 / Accepted: 30 April 1998  相似文献   

14.
One-dimensional metal lines of silver nanoparticles with a nano-sized width were generated onto silicon surface by using a nano-level lithography technique, field induced oxidation (FIO) by AFM, on self-assembled monolayer-modified Si wafers. This FIO technique provided SiO2 lines a width of less than 100 nm. Short-time immersion of partially anodized silicon surface which is covered by a cationic silanol surfactant ((CH3O)3SiCH2CH2CH2N(CH3)3+Cl)-monolayer into quaternary ammonium (HSCH2CH2N(CH3)3+Br)-covered silver nanoparticles readily and reproducibly gave nano-metal lines of silver onto silicon wafers. Hydrophilicity of the whole wafer surface was indispensable for homogeneously wetting the anodized SiO2 area with a nanodimensional width.  相似文献   

15.
Silver nanocrystallites are obtained through immersion of porous silicon samples in AgNO3 solutions and a successive thermal annealing. The efficiency of nanostructures as surface enhanced Raman scattering (SERS) substrates is checked on cyanine-based dyes and horseradish peroxidase, evidencing detectable concentrations as low as 10−7 to 10−8 M. The substrate efficiency is strictly related to the Ag particle morphology, which could yield to either local surface plasmons (LSP) coupled to individual particles or to inter-particle short-range interaction.  相似文献   

16.
The BaW04-17 phase is synthesized at 5.0 GPa and 610~C with a cubic-anvil apparatus and identified by XRD. Raman scattering measurement is carried out to investigate the phase behaviour of a pure BaW04-Ⅱ phase (space group P21/n, Z = 8) under hydrostatic pressures up to 14.8 GPa at ambient temperature. In each spectrum recorded for this phase, 27 Raman modes are observed, and all bands shift toward higher wavenumber with a pressure dependence ranging from 3.8 to 0.2 cm- 1/GPa. No pressure-driven phase transition occurs in the entire pressure range in this study. Our results indicate that the previously reported high pressure phase of Ba WO4 at pressure above about 10 GPa and room temperature (Errandonea et al. Phys. Rev. B 73(2006)224103) is not the BaW04-Ⅱ phase.  相似文献   

17.
Infrared (IR) spectroscopy of chemisorbed C60 on Ag (111), Au (110) and Cu (100) reveals that a non-IR-active mode becomes active upon adsorption, and that its frequency shifts proportionally with the charge transferred from the metal to the molecule by about 5 cm-1 per electron. The temperature dependence of the frequency and the width of this IR feature have also been followed for C60/Cu (100) and were found to agree well with a weak anharmonic coupling (dephasing) to a low-frequency mode, which we suggest to be the frustrated translational mode of the adsorbed molecules. Additionally, the adsorption is accompanied by a broadband reflectance change, which is interpreted as due to the scattering of conduction electrons of the metal surface by the adsorbate. The reflectance change allows determination of the friction coefficient of the C60 molecules, which results in rather small values (∼2×109 s-1 for Ag and Au, and ∼1.6×109 s-1for Cu), consistent with a marked metallic character of the adsorbed molecules. Pre-dosing of alkali atoms onto the metal substrates drastically changes the IR spectra recorded during subsequent C60 deposition: anti-absorption bands, as well as an increase of the broadband reflectance, occur and are interpreted as due to strong electron–phonon coupling with induced surface states. Received: 6 June 2001 / Accepted: 23 October 2001 / Published online: 3 April 2002  相似文献   

18.
Manganese oxide (hausmannite) nanowires were prepared by annealing precursor powders at a temperature of 800 °C for 3 h, which were produced in a novel inverse microemulsion (IμE) system. The microstructures of the as-prepared Mn3O4 nanowires were investigated by means of X-ray diffraction, transmission electron microscopy, and Raman spectra. It has been found that the Mn3O4 nanowires were relatively straight and their surfaces were smooth with a typical diameter of 75–150 nm. The formation mechanism of the Mn3O4 nanowires is discussed. Received: 30 May 2002 / Accepted: 7 October 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: wangqun@nju.edu.cn  相似文献   

19.
It is shown that Raman spectroscopy can provide useful information on characteristic properties of thin crystalline films of compound semiconductors. Crystal orientation, carrier concentration, scattering times of charge carriers, composition of mixed crystals and depth profiles can be studied in thin layers and heterostructures of GaAs and AlxGa1−xAs. The advantages and disadvantages of Raman scattering compared to conventional characterization methods are discussed.  相似文献   

20.
We investigated the morphological, structural and electronic properties of Pentacene thin films grown by vacuum thermal evaporation on different inert substrates at room temperature. The results of our AFM and STM analysis give an interplanar spacing of 1.54 nm corresponding to the (0 0 1) distance of the so-called “thin film phase”. The STS measurements show an HOMO-LUMO gap of 2.2 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号