首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The damage characteristics of polyethylene terephthalate (PET) have been studied under bombardment by C60+, Au3+ and Au+ primary ions. The observed damage cross-sections for the three ion beams are not dramatically different. The secondary ion yields however were significantly enhanced by the polyatomic primary ions where the secondary ion yield of the [M + H]+ is on average 5× higher for C60+ than Au3+ and 8× higher for Au3+ than Au+. Damage accumulates under Au+ and Au3+ bombardment while C60+ bombardment shows a lack of damage accumulation throughout the depth profile of the PET thick film up to an ion dose of ∼1 × 1015 ions cm−2. These properties of C60+ bombardment suggest that the primary ion will be a useful molecular depth profiling tool.  相似文献   

2.
Effects of platinum silicon, graphite and PET substrates on the secondary ion yield of sub-monolayer and multilayer samples of Cyclosporin A following 20 keV Au+, Au3+and C60+ impacts have been investigated. The obtained results of sub-monolayer samples show that platinum enhances the yield of the pseudo-molecular ion following Au+ and Au3+ impacts due to the high density of the substrate that enables the energy of the primary ions to be deposited near the surface. C60+ impacts on sub-monolayer samples are less effective, but there is an enhancement on PET substrates. Impacts of 20 keV Au+ and Au3+ are not very efficient on multilayer samples. 20 keV C60+ impacts enhance the yields significantly, especially for the relatively high molecular weight [M+H]+ ion.  相似文献   

3.
In secondary ion mass spectrometry, polyatomic primary ion sources are known to enhance yields from many surfaces including polymers. In order to understand the fundamental causes for these increases, the enhancement as a function of material type and molecular weight needs to be delineated. In this article, we report results from a systematic investigation of polymeric films of polystyrene (PS) with varying molecular weights to examine the influence of the primary ion beam on the secondary ion yields in time of flight secondary ion mass spectrometry (ToF-SIMS). The masses of the polymers investigated ranged from 1000 to 20,000 Da, or from about n = 10 to 200 where n indicates the number of polymeric units in a polymer chain. The polymers had a narrow molecular weight range (PDI < 1.07). The multilayer polymeric films (10-30 nm) characterized by AFM were prepared by spin-casting onto silicon substrates and were analyzed using Au+ and C60+ primary ion beams. The analysis with the two beams provided a useful comparison between atomic and polyatomic primary ion sources. Information gathered from this study provides insight into the role of molecular weight on the observed yield enhancement from polyatomic ion sources.  相似文献   

4.
Pristine and Au-covered molecular films have been analyzed by ToF-SIMS (TRIFT™), using 15 keV Ga+ (FEI) and 15 keV C60+ (Ionoptika) primary ion sources. The use of C60+ leads to an enormous yield enhancement for gold clusters, especially when the amount of gold is low (2 nmol/cm2), i.e. a situation of relatively small nanoparticles well separated in space. It also allows us to extend significantly the traditional mass range of static SIMS. Under 15 keV C60+ ion bombardment, a series of clusters up to a mass of about 20,000 Da (Au100: 19,700 Da) is detected. This large yield increase is attributed to the hydrocarbon matrix (low-atomic mass), because the yield increase observed for thick metallic films (Ag, Au) is much lower. The additional yield enhancement factors provided by the Au metallization procedure for organic ions (MetA-SIMS) have been measured under C60+ bombardment. They reach a factor of 2 for the molecular ion and almost an order of magnitude for Irganox fragments such as C4H9+, C15H23O+ and C16H23O.  相似文献   

5.
The anisotropic shape transformation of gold nanorods (GNRs) with H2O2 was observed in the presence of “cethyl trimethylammonium bromide” (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H2O2: Au0 → Au+, Au0 + Aun+ → 2Au3+, n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H2O2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H2O2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br ions.  相似文献   

6.
Pellets of nanocrystalline aluminum oxide synthesized by a combustion technique are irradiated with 120 MeV Au9+ ions for fluence in the range 5×1011-1×1013 ions cm−2. Two photoluminescence (PL) emissions, a prominent one with peak at ∼525 nm and a shoulder at ∼465 nm are observed in heat treated and Au9+ ion irradiated aluminum oxide. The 525 nm emission is attributed to F22+-centers. The PL intensity at 525 nm is found to increase with increase in ion fluence up to 1×1012 ions cm−2 and decreases beyond this fluence. Thermoluminescence (TL) of heat-treated and swift heavy ion (SHI) irradiated aluminum oxide gives a strong and broad TL glow with peak at ∼610 K along with a weak shoulder at 500 K. The TL intensity is found to increase with Au9+ ion fluence up to 1×1013 ions cm−2 and decreases beyond this fluence.  相似文献   

7.
A new method in time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging, the droplet-enhanced method, was developed for the molecular analysis of biomaterials. To facilitate the ionization of biomolecules, a small amount of aqueous solution containing a variety of protonation agents as ionization-enhancing agents was dropped onto peptide samples before ToF-SIMS measurement. Using trifluoroacetic acid (TFA) as an enhancing agent, protonated insulin (MW 5733) ions were detected as not only [M + H]+ but also [M + 2H]2+ and [M + 3H]3+ from its film sample, using a Ga+ primary beam. TFA promoted the ionization of the large molecules much more effectively than did the other acids, and this peculiarity is related to both Na+ and Au3+ intensities. We also demonstrated the visualization of dot-patterned insulin drawn with our bubble jet (BJ) printing technology using insulin molecular ion signals.  相似文献   

8.
The prospects for SIMS three-dimensional analysis of biological materials were explored using model multilayer structures. The samples were analyzed in a ToF-SIMS spectrometer equipped with a 20 keV buckminsterfullerene (C60+) ion source. Molecular depth information was acquired using a C60+ ion beam to etch through the multilayer structures at specified time intervals. Subsequent to each individual erosion cycle, static SIMS spectra were recorded using a pulsed C60+ ion probe. Molecular intensities in sequential mass spectra were monitored as a function of primary ion fluence. The resulting depth information was used to characterize C60+ bombardment of biological materials. Specifically, molecular depth profile studies involving dehydrated dipalmitoyl-phosphatidylcholine (DPPC) organic films indicate that cell membrane lipid materials do not experience significant chemical damage when bombarded with C60+ ion fluences greater than 1015 ions/cm2. Moreover, depth profile analyses of DPPC-sucrose frozen multilayer structures suggest that biomolecule information can be uncovered after the C60+ sputter removal of a 20 nm overlayer with no appreciable loss of underlying molecular signal. The experimental results support the potential for three-dimensional molecular mapping of biological materials using cluster SIMS.  相似文献   

9.
Secondary ion mass spectrometry (SIMS) employing an SF5+ polyatomic primary ion source was utilized to analyze several materials commonly used in drug-eluting stents (DES). Poly(ethylene-co-vinyl acetate) (PEVA), poly(lactic-co-glycolic acid) (PLGA) and various poly(urethanes) were successfully depth profiled using SF5+ bombardment. The resultant molecular depth profiles obtained from these polymeric films showed very little degradation in molecular signal as a function of increasing SF5+ primary ion dose when experiments were performed at low temperatures (signal was maintained for doses up to ∼5 × 1015 ions/cm2). Temperature was determined to be an important parameter in both the success of the depth profiles and the mass spectral analysis of the polymers. In addition to the pristine polymer films, paclitaxel (drug released in Taxus™ stent) containing PLGA films were also characterized, where it was confirmed that both drug and polymer signals could be monitored as a function of depth at lower paclitaxel concentrations (10 wt%).  相似文献   

10.
In this study, a series of random copolymers of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) were prepared as surface-initiated polymer (SIP) films on silicon substrates using atom transfer radical polymerization. Positive and negative ion static time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to characterize SIP films with different MMA/EGDMA monomer ratios in an attempt to quantify their surface composition. However, matrix effects in the positive and negative ion modes led to preferential secondary ion generation from the EGDMA monomer and suppression of secondary ions characteristic of the MMA monomer, precluding accurate quantification using standard linear quantification methods. Ion-induced degradation of these films under 5 keV SF5+ bombardment was also examined to determine the effect of cross-linking on the accumulation of ion-induced damage. Increasing incorporation of the EGDMA cross-linker in the SIP films decreased the sputter rate and increased the rate of damage accumulation under extended (>1014 ions/cm2) 5 keV SF5+ bombardment. Comparison of the ion bombardment data with thermal degradation of cross-linked PMMA suggests that the presence of the cross-linker impedes degradation by depolymerization, resulting in ion-induced damage accumulation. The increased rate of ion-induced damage accumulation with increased cross-link density also suggests that polymers that can form cross-links during ion bombardment are less amenable to depth profiling using polyatomic primary ions.  相似文献   

11.
The reduction process of Bi3+, HTeO2+ and their mixtures on Au electrode surface was studied by cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry. XRD and EDS methods were also used to measure the reductive products prepared under different potentials and provide the evidences of the reactions. The results indicate that the reduction of HTeO2+ occurs at more positive potential than that of Bi3+, but its reduction rate is slower and adsorption phenomenon exists during its reduction process. Bi2Te3 compound can be obtained potentiostatically at a proper potential in all the mixed solutions with concentration ratio CHTe+O2/CBi3+ in our research range (0.1-10). But pure Bi2Te3 compound can only be obtained at 42 mV in the solution with concentration ratio CHTe+O2/CBi3+ equaling to 1. And the formation of Bi2Te3 compound is an inductive co-depositing process: (1) HTeO2+ + 4e + 3H+ → Te0 + 2H2O, (2) 3Te0 + 2Bi3+ + 6e → Bi2Te3.  相似文献   

12.
Metal cluster complexes are chemically synthesized organometallic compounds, which have a wide range of chemical compositions with high molecular weight. Using a metal cluster complex ion source, sputtering characteristics of silicon bombarded with normally incident Ir4(CO)7+ ions were investigated. Experimental results showed that the sputtering yield at 10 keV was 36, which is higher than that with Ar+ ions by a factor of 24. In addition, secondary ion mass spectrometry (SIMS) of boron-delta-doped silicon samples and organic films of poly(methyl methacrylate) (PMMA) was performed. Compared with conventional O2+ ion beams, Ir4(CO)7+ ion beams improved depth resolution by a factor of 2.5 at the same irradiation conditions; the highest depth resolution of 0.9 nm was obtained at 5 keV, 45° with oxygen flooding of 1.3 × 10−4 Pa. Furthermore, it was confirmed that Ir4(CO)7+ ion beams significantly enhanced secondary ion intensity in high-mass region.  相似文献   

13.
The fundamental sputtering properties of water ice are of interest for molecular depth profiling of biological samples in their native environment. We report on a method of studying amorphous water ice films of precise thicknesses in which pure water vapor is condensed onto a pre-cooled, silver-coated quartz crystal microbalance (QCM). This scheme allows for the determination of water ice sputter yields for any primary projectile as well as providing a means for studying escape depths of atoms and molecules beneath the deposited water ice layer. Specifically, we find a removal of approximately 2500 water molecule equivalents/20 keV C60+ projectile with an underlying silver ion escape depth of 7.0 Å.  相似文献   

14.
The kinetics and mechanisms of the reactions of cyanomidyl radical (HNCN) with oxygen atoms and molecules have been investigated by ab initio calculations with rate constant prediction. The doublet and quartet state potential energy surfaces (PESs) of the two reactions have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df, 2p) level based on geometries optimized at the CCSD/6-311++G(d, p) level. The rate constants for various product channels of the two reactions in the temperature range of 300-3000 K are predicted by variational transition state and RRKM theories. The predicted total rate constants of the O(3P) + HNCN reaction at 760 Torr Ar pressure can be represented by the expressions ktotal (O + HNCN) = 3.12 × 10−10 × T−0.05 exp (−37/T) cm3 molecule−1 s−1 at T = 300-3000 K. The branching ratios of primary channels of the O(3P) + HNCN are predicted: k1 for producing the NO + CNH accounts for 0.72-0.64, k2 + k9 for producing the 3NH + NCO accounts for 0.27-0.32, and k6 for producing the CN + HNO accounts for 0.01-0.07 in the temperature range studied. Meanwhile, the predicted total rate constants of the O2 + HNCN reaction at 760 Torr Ar pressure can be represented by the expression, ktotal(O2 + HNCN) = 2.10 × 10−16 × T1.28exp (−12200/T) cm3 molecule−1 s−1 at T = 300-3000 K. The predicted branching ratio for k11 + k13 producing HO2 + 3NCN as the primary products accounts for 0.98-1.00 in the temperature range studied.  相似文献   

15.
We investigated the emission of the secondary ions stimulated by single impacts of 136 keV Au4004+ projectiles. The study was carried out on targets of glycine, phenylalanine, and C60. In addition, a target of C60 was examined with 18 keV C60+ projectiles. The experiments were performed in the event-by-event bombardment/detection mode. The secondary ions were identified with linear time-of-flight mass spectrometer equipped with an 8-anode detector. The Au4004+ projectile induces abundant multi-ion emission, for instance the average number of detected ions (atomic, fragment, molecular and cluster ions) emitted per event from glycine target is 12.5. The glycine intact molecular ion (Gly) yield is 1.14. The bombardment of a C60 target results in the efficient emission of multiple intact C60 (total yield is 0.15).  相似文献   

16.
Molecular dynamics simulations were performed to study the behavior of cluster SIMS. Two predominant cluster ion beam sources, C60 and Au3, were chosen for comparison. An amorphous water ice substrate was bombarded with incident energy of 5 keV. The C60 cluster was observed to shatter upon impact creating a crater of damage approximately 8 nm deep. Although Au3 was also found to both break apart and form a damage crater, it continued along its initial trajectory causing damage roughly 10 nm deep into the sample and becoming completely imbedded. It is suggested that this difference in behavior is due to the large mass of Au relative to the substrate water molecule.  相似文献   

17.
The effect of incident angle on the quality of SIMS molecular depth profiling using C60+ was investigated. Cholesterol films of ∼300 nm thickness on Si were employed as a model and were eroded using 40 keV C60+ at an incident angle of 40° and 73° with respect to the surface normal. The erosion process was characterized by determining at each angle the relative amount of chemical damage, the total sputtering yield of cholesterol molecules, and the interface width between the film and the Si substrate. The results show that there is less molecule damage at an angle of incidence of 73° and that the total sputtering yield is largest at an angle of incidence of 40°. The measurements suggest reduced damage is not necessarily dependent upon enhanced yields and that depositing the incident energy nearer the surface by using glancing angles is most important. The interface width parameter supports this idea by indicating that at the 73° incident angle, C60+ produces a smaller altered layer depth. Overall, the results show that 73° incidence is the better angle for molecular depth profiling using 40 keV C60+.  相似文献   

18.
We have used 23 keV C60+ projectiles in the event-by-event bombardment and detection mode to investigate the emission of the gramicidin S [M − H] ion embedded in a matrix of sinapic acid. We have observed an increase in the gramicidin S [M − H] ion of approximately eight times by controlling the ratio of gramicidin S to sinapic acid. The maximum of the gramicidin S [M − H] yield occurs at a matrix/analyte ratio of 10:1. This ratio is different from those typically used in matrix-assisted laser desorption/ionization.  相似文献   

19.
The emergence of cluster ion sources as viable SIMS probes has opened new possibilities for detection of neutral molecules by laser postionization. Previous studies have shown that with atomic bombardment multiphoton ionization using high-power femtosecond pulses leads to photofragmentation. The large amount of photofragmentation can be mostly attributed to high amounts of internal energy imparted to the sputtered molecules during the desorption process. Several pieces of preliminary data suggest that molecules subjected to cluster beam bombardment are desorbed with lower internal energies than those subjected to atomic beam bombardment. Lower energy molecules may then be less likely to photodissociate creating less photofragments in the laser postionization spectra. Here we present data taken from coronene films prepared by physical vapor deposition comparing a 40 keV ion source with a 20 keV Au+ ion source, which supports this hypothesis. Furthermore, the depth profiling capabilities of cluster beams may be combined with laser postionization to obtain molecular depth profiles by monitoring the neutral flux. In addition, imaging and depth profiling may be combined with atomic force microscopy (AFM) to provide three-dimensional molecular images.  相似文献   

20.
Er3+/Yb3+/Li+-tridoped BaTiO3 nanocrystals were prepared by a sol-gel method to improve the upconversion (UC) luminescence of rare-earth doped BaTiO3 nanoparticles. Effects of Li+ ion on the UC emission properties of the Er3+/Yb3+/Li+-tridoped BaTiO3 nanocrystals were investigated. The results indicated that tridoping with Li+ ion enhanced the visible green and red UC emissions of Er3+/Yb3+-codoped BaTiO3 nanocrystals under the excitation of a 976 nm laser diode. X-ray diffraction and decay time of the UC luminescence were studied to explain the reasons of the enhancement of UC emission intensity. X-ray diffraction results gave evidence that tridoping with Li+ ion decreased the local symmetry of crystal field around Er3+, which increased the intra-4f transitions of Er3+ ion. Moreover, lifetimes in the intermediate 4 S3/2 and 4I11/2 (Er) states were enhanced by Li+ ion incorporation in the lattice. Therefore, it can be concluded that Li+ ion in rare-earth doped nanocrystals is effective in enhancing the UC emission intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号