共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Deleplanque 《Applied Surface Science》2009,255(9):4897-4901
Trimethylphosphine (TMP) has been used as an NMR probe in order to determine the acidity of Keggin-type 12-tungstophosphoric heteropolyacid (HPW), pure and supported on silica, dehydrated at 473 K. Adsorption of TMP on pure dehydrated HPW leads to the formation of trimethylphosphonium ions (TMPH+) characteristic of the presence of strong Brönsted acid sites. TMP replaces the water molecules lost by dryness and allows the Keggin secondary structure to recover.Silica interacts with TMP by two kinds of acid sites: with weak acid support sites through the isolated silanol groups and with strong Brönsted acid, which lead to the formation of TMPH+, through the hydrogen-bonded silanol groups. Silica only interacts with HPW through its isolated silanol groups. 相似文献
2.
The adsorption of the chiral modifier cinchonidine on Au(l 1 1) in UHV has been studied by means of TPD, LEED and XPS. In the monolayer the molecule is bound via nitrogen lone pair electrons of its quinoline part rather than via the π-system of this aromatic moiety. Intact molecular desorption is only observed for the multilayers. Decomposition in the first monolayer upon heating occurs above 400 K, indicating a stronger interaction in the monolayer. No long-range ordered structures were observed via LEED. Long-time exposure leads to rearrangement and further stabilization of the first molecular monolayer. Quinoline is bound to gold via the nitrogen lone pair as well. The binding energy of 9.6 kcal/mol is characteristic for physisorption. 相似文献
3.
Victor Callegari Philipp M. Nellen Roland Hauert Francisco Hernández-Ramírez 《Applied Surface Science》2007,253(22):8969-8973
Focused ion beam physical sputtering and iodine-enhanced etching of indium phosphide (InP) were performed. Up to 15× enhanced etching rates over sputtering were measured at room temperature, due to the addition of iodine to the sputter-process. Reaction mechanisms and products are discussed and characterized. The reaction is limited by the desorption of indium triiodide (InI3) at room temperature. InI3 has to be removed by sputtering, which simultaneously amorphizes the underlying substrate. Surface roughness and stoichiometry of InP are compared for sputtering and etching. Gallium-contamination and the damaged zone in InP are significantly reduced by iodine-enhanced etching. Based on the reaction mechanisms, an optimum beam scanning strategy is proposed which allows precise microfabrication in reduced time and minimizes damage to the substrate. The method is also applicable for other halide gas etching processes of III-V semiconductors. 相似文献
4.
B. Lescop 《Applied Surface Science》2006,252(6):2276-2280
Metastable induced electron spectroscopy (MIES) was combined to ultraviolet photoelectron spectroscopy (UPS) to study the initial steps of manganese oxidation. Oxygen exposure directly led to the formation of MnO with no intermediate states. The MnO feature saturation observed by MIES and UPS techniques showed noticeable differences and proved the formation of several oxide layers. The oxidation kinetics was studied by measuring MnO features by UPS, which depend on the surface coverage by oxygen. We observe a decrease of oxygen adsorption probability with oxygen exposure. Oxidation proceeds by oxygen dissolution into the first layers to form a three-dimension MnO. This hypothesis was confirmed by our work function measurements. 相似文献
5.
Biphasic calcium phosphate (BCP)/poly l-lactide (PLLA) biocomposite is proven to be a promising bone graft material or scaffold for bone tissue engineering. To improve the interfacial compatibility of BCP bioceramic with biopolymer-PLLA, BCP powders were surface-modified in different condition to graft polymer groups onto the surface of the BCP powders. l-lactide and l-lactic acid (LA) oligomer were used to modify the BCP surface with stannous octanoate (Sn(Oct)2) and stannous chloride (SnCl2) as catalyst, respectively. Results show that the surface modification effect is obvious and the amount of grafted organic group is above 6.5 wt.%. Sn(Oct)2 and SnCl2 are the optimal catalysts for the surface grafting reaction of l-lactide and l-LA oligomer, respectively. The surface grafting slightly increase the particle size of BCP powders and reduce the tendency for their agglomeration. 相似文献
6.
In classic carbon supports is very difficult to control pore size, pore size distribution, and surface chemical properties at the same time. In this work microporous carbons derived from furfuryl alcohol are used as support to prepare Ni-doped carbon materials. The N2 flow rate used during the carbonisation process of the precursor influences on the size of the nanospheres obtained but not in their textural properties. Microporous carbon nanospheres have been synthesised with a narrow pore size distribution centred in 5.5 Å. The surface chemistry of these materials can be easily modified by different treatments without detriment of the pore structure of the doped carbon nanospheres. 相似文献
7.
A detailed study of the La1−xCaxCoO3 perovskites surface by XPS was carried out since this is a potentially useful tool to identify the oxygen species involved in the catalytic reaction and discriminate them. Mainly, the concentration of surface oxygen vacancies (λ′) can be estimated from the XPS atomic ratio. 相似文献
8.
D. Mercier 《Applied Surface Science》2008,254(20):6495-6503
Interaction of propylamine (PA), 1,2-diaminoethane (DAE) or 3-aminomethyl-3,5,5-trimethylcyclohexylamine (isophorone diamine, IPDA) with native aluminium oxide layers in non-aqueous environment has been studied using time-resolved inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS). The formation of several surface complexes has been evidenced. Monodentate and bidentate metal-bond surface complexes (MBSC) result from interactions between the amine terminations of the molecule and aluminium cations by donation of the N lone electron pair to the metal ion (Lewis-like mechanism leading to OAl?N bonds). Monodentate and bidentate hydrogen-bond surface complexes (HBSC) are due to interaction of the amino group with surface hydroxyl groups by protonation of the amine termination (Brønsted-like mechanism leading to the formation of AlOH?N bonds) or interaction with carbonaceous contamination (CxOyHz?N bonds). Diamines can also form mixed complexes with one amino group forming an O-Al?N bond and the other group forming an AlOH…N or CxOyHz?N bond. AlOH?N and CxOyHz…N bonds are less stable under vacuum than OAl?N bonds, leading to partial desorption of the DAE molecules in vacuum and modification of the interaction modes. Only DAE and IPDA can lead to partial dissolution of the aluminium native (hydr)oxide films. A detailed mechanism of dissolution has been proposed based on the formation of mononuclear bidentate (chelate) MBSC by ligand exchange between the terminal η1-OH and bridged μ2-OH surface sites and the amino terminations of the molecule. The detachment of this complex from the surface is likely to be the precursor step to the formation of the interphase in epoxy-amine/metal systems. 相似文献
9.
Attenuated total reflection infrared spectroscopy (ATR-FT-IR) is employed to study the H/D-exchange of planar hydroxylated silica during ND3 and D2 dosing, and catalyzed by Rh nanoparticles. For ND3 dosing, it is observed that the H/D-exchange is about 10 times more efficient in the presence of Rh nanoparticles on the hydroxylated silica than for bare hydroxylated silica. When the Rh adsorption sites are blocked by CO, the H/D-exchange is similar to the case without Rh nanoparticles. No H/D-exchange is observed for exposure to D2 regardless of the presence of Rh nanoparticles. Hydrogen spillover, involving the decomposition of D2 on the Rh and subsequent transfer of atomic D to the oxide support, therefore does not explain the observed effects. Alternatively, we conjecture that for ND3, the exchange is through a mechanism in which ND3 adsorption on the edge of the Rh particles takes place, followed by direct H/D exchange with the hydroxyls of the support. This exchange is possibly aided by the formation of ammonium complexes with the help of hydrogen from the hydroxyls. 相似文献
10.
The sticking coefficient of nitrogen gas on a thick solid nitrogen film on a copper cold finger was studied at low temperature. For surface temperatures of about 12 K the sticking coefficient is measured to be 99.0 ± 0.6%. Our result implies that it will be possible to make a intense and high brightness slow positron source starting from a small diameter deposit of the gaseous positron emitter 13N2 produced in the reaction 12C(d,n)13N. 相似文献
11.
Oxidation of Cu3Au(1 1 0) using a hyperthermal O2 molecular beam (HOMB) was investigated by X-ray photoemission spectroscopy in conjunction with a synchrotron light source. From the incident energy dependence of the O-uptake curve, the precursor-mediated dissociative adsorption occurs, where the trapped O2 molecule can migrate and dissociate at the lower activation-barrier sites, dominantly at thermal O2 exposures. Dissociative adsorption of O2 on Cu3Au(1 1 0) is as effective at the thermal O2 exposure as on Cu(1 1 0). On the other hand, at the incident energies of HOMB where the direct dissociative adsorption is dominant, it was determined that the dissociative adsorption of O2 implies a higher activation barrier and therefore less reactivity due to the Au alloying in comparison with the HOMB oxidation of Cu(1 1 0). The dissociative adsorption progresses with the Cu segregation on Cu3Au(1 1 0) similarly as on Cu3Au(1 0 0). The growth of Cu2O for 2 eV HOMB suggests that the diffusion of Cu atoms also contribute to the oxidation process through the open face, which makes the difference from Cu3Au(1 0 0). 相似文献
12.
A simple method was developed for the immobilization of reversible addition-fragmentation chain-transfer (RAFT) initiators on the silicon surface. Well-defined polymer-silicon hybrids, including the tethered brushes of glycidyl methacrylate (GMA) polymer, poly(ethylene glycol) monomethacrylate (PEGMA) polymer and block copolymer on a silicon wafer, were prepared via surface-initiated RAFT living radical polymerization. The “living” chain ends were used as the macroinitiator for the subsequent synthesis of diblock copolymers. 相似文献
13.
Electroless plating of copper on polyimide films modified by surface-initiated atom-transfer radical polymerization of 4-vinylpyridine 总被引:1,自引:0,他引:1
Surface modification of polyimide (PI) films were first carried out by chloromethylation under mild conditions, followed by surface-initiated atom-transfer radical polymerization (ATRP) of 4-vinylpyridine (4VP) from the chloromethylated PI surfaces. The composition and topography of the PI surfaces modified by poly(4-vinylpyridine) (P4VP) were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The P4VP brushes with well-preserved pyridine groups on the PI surface was used not only as the chemisorption sites for the palladium complexes without prior sensitization by SnCl2 solution during the electroless plating of copper, but also as an adhesion promotion layer to enhance the adhesion of the electrolessly deposited copper to the PI surfaces. The T-peel adhesion strength of the electrolessly deposited copper on the modified PI surface could reach about 6.6 N/cm. Effects of the polymerization time and the activation time in the PdCl2 solution on the T-peel adhesion strength of the electrolessly deposited copper in the Sn-free process to the modified PI surface were also studied. 相似文献
14.
S. Yeninas 《Applied Surface Science》2008,254(6):1720-1724
The adsorption of diethylamine (DEA) on Si(1 0 0) at 100 K was investigated using high-resolution electron energy loss spectroscopy (HREELS) and electron stimulated desorption (ESD). The thermal evolution of DEA on Si(1 0 0) was studied using temperature programmed desorption (TPD). Our results demonstrate DEA bonds datively to the Si(1 0 0) surface with no dissociation at 100 K. Thermal desorption of DEA takes place via a β-hydride elimination process leaving virtually no carbon behind. Electronic processing of DEA/Si(1 0 0) at 100 K results in desorption of ethyl groups; however, carbon and nitrogen are deposited on the surface as a result of electron irradiation. Thermal removal of carbon and nitrogen was not possible, indicating the formation of silicon carbide and silicon nitride. 相似文献
15.
Density functional theory calculations have been applied to investigate the adsorption geometry of water overlayers on the NaCl(1 0 0) surface in the monolayer regime. Competition between H-H intermolecular repulsion and the attraction of the polar molecules to the surface ions results in the most stable structure having a 2 × 1 adsorption symmetry with an adsorption energy of 415 meV. Overlayers of 1 × 1 symmetry, as observed in experiment, have slightly lower adsorption energies. The layers are also unstable with respect to rotation of individual molecules. Multiple hydrogens/oxygens interacting with a single substrate ion can pull that ion out of the surface, although the examples considered are energetically very unfavourable. Overlayers of 1 × 1 symmetry with a coverage of one water molecule per NaCl do not have a high enough adsorption energy to wet the surface. 相似文献
16.
Seung-Hoon Jhi Keith Bradley Jean-Christophe P. Gabriel 《Solid State Communications》2004,129(12):769-773
Hydrogen storage using physisorption requires higher desorption temperatures than those possible using conventional adsorbents such as carbon. Using computational design, we predict that several materials have extremely strong physisorption interactions with hydrogen, including 12 kJ/mol heat of adsorption for hydrogen on some sites. Experimental adsorption isotherms on one of the materials, boron oxide, confirm the calculations, and large coverage is observed at temperatures as high as the boiling point of methane, 115 K. Since these materials have sp2-like bonding, they should be amenable to the rich variety of chemical manipulations that have been used with carbon. 相似文献
17.
Recently, the feasibility of butane oxidation in an electrochemical membrane reactor (EMR) using a vanadium phosphorus oxide (VPO) catalyst layer on a tubular anodic electrode has been reported. This novel application of EMR gives rise to questions about the vanadium oxidation state (Vox) under working conditions and about its spatial distribution in the catalyst layer. It has now been determined by means of position-resolved XPS measurements. In addition, model calculations on the spatial Vox distribution have been performed for the first time. The simulations reveal a non-uniform 3D distribution of Vox due to the relative rate of reduction and re-oxidation processes in the catalyst layer, in good agreement with the experimental XPS data. 相似文献
18.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments. 相似文献
19.
Patrick E. Hopkins 《Applied Surface Science》2007,253(15):6289-6294
Accurate understanding and measurement of the energy transfer mechanisms during thermal nonequilibrium between electrons and the surrounding material systems is critical for a wide array of applications. With device dimensions decreasing to sizes on the order of the thermal penetration depth, the equilibration of the electrons could be effected by boundary effects in addition to electron-phonon coupling. In this study, the rate of electron equilibration in 20 nm thick Au films is measured with the Transient ThermoReflectance (TTR) technique. At very large incident laser fluences which result in very high electron temperatures, the electron-phonon coupling factors determined from TTR measurements deduced using traditional models are almost an order of magnitude greater than predicted from theory. By taking excess electron energy loss via electron-substrate transport into account with a proposed three temperature model, TTR electron-phonon coupling factor measurements are more in line with theory, indicating that in highly nonequilibrium situations, the high temperature electron system looses substantial energy to the substrate in addition to that transferred to the film lattice through coupling. 相似文献