首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We report a study on the fabrication and characterization of ultraviolet photodetectors based on ZnO:Al films. Using sol-gel technique, highly c-axis oriented ZnO films with 5 mol% Al doping were deposited on Si(1 1 1) substrates. The photoconductive UV detectors based on ZnO:Al thin films, having a metal-semiconductor-metal (MSM) structure with interdigital (IDT) configuration, were fabricated by using Au as a contact metal. The characteristics of dark and photocurrent of the UV detector and the UV photoresponse of the detector were investigated. The linear current-voltage (I-V) characteristics under both forward and reverse bias exhibit ohmic metal-semiconductor contacts. Under illumination using monochromatic light with a wavelength of 350 nm, photo-generated current was measured at 58.05 μA at a bias of 6 V. The detector exhibits an evident wide-range spectral responsivity and shows a trend similar to that in transmittance and photoluminescence spectrum.  相似文献   

2.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

3.
High-quality ultraviolet photoconductive detectors have been fabricated using Ga-doped zinc oxide layers grown by spray pyrolysis on glass substrates. The performance of the photoconductivity has been tested by the measurements of the current-voltage (I-V) characteristics under forward and reverse bias. The devices have been characterized to investigate the effect of buffer layer on the detector performances. The behaviour of photocurrent with respect to optical power density, wavelength and chopping time has been investigated. We achieved the highest responsivity of about 1125 A/W at 5 V bias at 365 nm peak wavelength. Our approach provides a simple and cost-effective way to fabricate high-performance ‘visible-blind’ UV detectors.  相似文献   

4.
5.
This article reports the effects of porosity on the enhancement of the Schottky barrier height (SBH) and reduction of the leakage current of Pt Schottky diode based on n-type GaN. The porous GaN layer in this work was generated by electroless chemical etching under UV illumination. For comparative study, two additional samples, i.e. one as-grown sample and one thermally treated sample, were also prepared. The structural studies showed that the porous GaN sample has a relatively rough surface morphology with slightly broader X-ray diffraction peak of the (0 0 0 2) plane. The current-voltage (I-V) measurements revealed that the electrical characteristics of the Pt Schottky diode were improved significantly by the presence of the porous layer, in which SBH was observed to be enhanced by 27%.  相似文献   

6.
The optoelectronic characteristics of Ni/Au Schottky photodiodes based on Al0.35Ga0.65N were investigated. The transmission of the Ni (50 Å)/Au (50 Å) layer was determined by evaporating it on a quartz substrate. As evaporated, the transmission coefficient in the 200–350 nm wavelength range was found to be 43 to 48%. Annealing at temperatures of up to 400 °C did not influence the transmission coefficient. After annealing at 500 °C, the transmission coefficient increased from 50 to 68% over the 200–350 nm range. The reverse bias current was optimised in terms of annealing temperature and was found to be as low as 1.94×10−13 A after annealing at 400 °C for a 0.6 mm diameter contact. The Schottky barrier heights increased with annealing temperature reaching as high as 1.46 and 1.89 eV for IV and CV measurements, respectively. The quantum efficiency was measured to be 20.5% and the responsivity reached its peak of 0.046 A/W at 275 nm. The cut-off wavelength was 292 nm.  相似文献   

7.
The electrical behaviour of lateral Al/n-GaN/Al structures has been studied by current-voltage measurements between a large pad with an area of 22 mm2 and small contacts with different areas in the range of 0.01-1 mm2. The results indicated that near room temperature the current was limited by the GaN layer exhibiting linear I-V characteristics for large contacts around 1 mm2, while it was contact limited for small contacts around 0.1 mm2 and below. This indicates that the same metal contact can behave as ohmic or rectifying depending on the contact area and so on the ratio of contact resistance to the series resistance of the structure.Near liquid nitrogen temperature, the current through the lateral Al/n-GaN/Al structures was limited by space charges. The Al/n-GaN contacts exhibited a very low Schottky barrier height below or around 0.2 eV. A new possible mechanism responsible for the temperature dependence of the ideality factor is proposed.  相似文献   

8.
Metal-semiconductor-metal-structured GaN ultraviolet photodetectors have been fabricated on sapphire substrates by metalorganic chemical vapor deposition. The properties of GaN photodetectors have been improved through thermal annealing. With a 3 V bias, the very low dark current is about 200 pA, the maximum responsivity of 0.19 A/W is achieved at 362 nm, and the corresponding detectivity is 1.2×1011 cm Hz1/2/W. The physical mechanism of the effects of thermal annealing also has been studied.  相似文献   

9.
Thin film of non-polymeric organic compound pyronine-B has been fabricated on moderately doped (MD) n-InP substrate as an interfacial layer using spin coating technique for the electronic modification of Au/MD n-InP Schottky contact. The electrical characteristics have been determined at room temperature. The barrier height and the ideality factor values for Au/pyronine-B/MD n-InP Schottky diode have been obtained from the forward bias I-V characteristics at room temperature as 0.60 eV and 1.041; 0.571 and 1.253 eV after annealing at 100 and 250 °C, respectively. An increase in annealing temperature at the Au/n-InP Schottky junction is shown to increase the reverse bias leakage current by about one order of magnitude and decrease the Schottky barrier height by 0.027 eV. Furthermore, the barrier height values for the Au/pyronine-B/MD n-InP Schottky diode have also been obtained from the C-V characteristics at room temperature as 1.001 and 0.709 eV after annealing at 100 and 250 °C, respectively. Finally, it was seen that the diode parameters changed with increase in the annealing temperature.  相似文献   

10.
Schottky barrier contact using three different metal (Zr, Ti, Cr and Pt) and Ohmic contact using Ni were made on same epitaxial growth layer of p-GaN. Measurements were carried out using current-voltage-temperature (I-V-T) in the range of 27-100°C. Under forward bias and room-temperature (RT), the ideality factors (η) were determined to be 2.38, 1.82, 1.51 and 2.63, respectively, for Zr, Ti, Cr and Pt. The Schottky barrier height (SBH) and effective Richardson coefficient A** were measured through modified Norde plot as one of the analysis tools. Barrier heights of 0.84, 0.82, 0.77 and 0.41 eV for Zr, Ti, Cr and Pt, respectively, were obtained from the modified Norde plot. Schottky barrier heights of Zr, Ti, or Cr/p-GaN were also measured through activation energy plot, and determined to be in the same range (∼0.87 eV) and Pt at 0.49 eV. These results indicate that the Fermi level seems to be pinned due to the value of slope parameter (S) was very low (S = −0.25).  相似文献   

11.
易淋凯  黄佳琳  周梅  李春燕  赵德刚 《发光学报》2017,38(10):1327-1331
研究了p-i-n型和肖特基型Ga N基紫外探测器的响应光谱和暗电流特性。实验发现,随着p-Ga N层厚度的增加,p-i-n型紫外探测器的响应度下降,并且在短波处下降更加明显。肖特基探测器的响应度明显比pi-n结构高,主要是由于p-Ga N层吸收了大量的入射光所致。肖特基型紫外探测器的暗电流远远大于p-i-n型紫外探测器的暗电流,和模拟结果基本一致,主要是肖特基型探测器是多子器件,而p-i-n型探测器是少子器件。要制备响应度大、暗电流小的高性能Ga N紫外探测器,最好采用p-Ga N层较薄的p-i-n结构。  相似文献   

12.
In this paper, we report on the characteristics of GaN films grown on Si(111) at a low temperature (200 °C) by electron cyclotron resonance (ECR) plasma-assisted metalorganic chemical vapor deposition (PA-MOCVD). Structural analysis of the GaN films was performed by using scanning electron microscopy (SEM), atomic force miscroscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), and Rutherford backscattering spectrometry (RBS). Post deposition analysis revealed high quality crystalline GaN was obtained at this low temperature. Electrical analysis of the GaN films was done by using current-voltage (I-V) measurements where electrical characterizations were carried on GaN/Si heterojunction and Schottky barrier diodes. Rectification behaviour was observed for the isotype GaN/Si (n-n) heterojunction. Ideality factors and Schottky barrier heights for Ni and Cr Schottky barriers on GaN, were deduced to be 1.4 and 1.7; and 0.62 and 0.64 eV, respectively.  相似文献   

13.
For the advance of GaN based optoelectronic devices, one of the major barriers has been the high defect density in GaN thin films, due to lattice parameter and thermal expansion incompatibility with conventional substrates. Of late, efforts are focused in fine tuning epitaxial growth and in search for a low temperature method of forming low defect GaN with zincblende structure, by a method compatible to the molecular beam epitaxy process. In principle, to grow zincblende GaN the substrate should have four-fold symmetry and thus zincblende GaN has been prepared on several substrates including Si, 3C-SiC, GaP, MgO, and on GaAs(0 0 1). The iso-structure and a common shared element make the epitaxial growth of GaN on GaAs(0 0 1) feasible and useful. In this study ion-induced conversion of GaAs(0 0 1) surface into GaN at room temperature is optimized. At the outset a Ga-rich surface is formed by Ar+ ion bombardment. Nitrogen ion bombardment of the Ga-rich GaAs surface is performed by using 2-4 keV energy and fluence ranging from 3 × 1013 ions/cm2 to 1 × 1018 ions/cm2. Formation of surface GaN is manifested as chemical shift. In situ core level and true secondary electron emission spectra by X-ray photoelectron spectroscopy are monitored to observe the chemical and electronic property changes. Using XPS line shape analysis by deconvolution into chemical state, we report that 3 keV N2+ ions and 7.2 × 1017 ions/cm2 are the optimal energy and fluence, respectively, for the nitridation of GaAs(0 0 1) surface at room temperature. The measurement of electron emission of the interface shows the dependence of work function to the chemical composition of the interface. Depth profile study by using Ar+ ion sputtering, shows that a stoichiometric GaN of 1 nm thickness forms on the surface. This, room temperature and molecular beam epitaxy compatible, method of forming GaN temperature can serve as an excellent template for growing low defect GaN epitaxial overlayers.  相似文献   

14.
Micro-structural investigation of Ni/GaN Schottky barrier diodes has been carried out using high-resolution transmission electron microscopy and electron diffraction spectrum in order to emphasize the role of Ni/GaN interface in controlling the Schottky diode behavior. Variable temperature Hall effect measurement of GaN samples along with the current–voltage (IV) characteristics of Ni/n-GaN Schottky barrier diodes have been measured in 100–380 K temperature range. Results are analyzed in terms of thermionic emission theory by incorporating the concept of barrier inhomogeneity at the metal/semiconductor interface. The observed anomaly of temperature dependence of Schottky barrier height and ideality factor are explained by invoking two sets of Gaussian distribution of SBH in the temperature ranges of 100–180 K and 220–380 K, respectively. The value of A** (effective Richardson constant) as determined from the modified Richardson plot is 29.2 A/(cm2 K2), which shows an excellent agreement with the theoretical value (26.4 A/(cm2 K2)) in the temperature range of 220–380 K.  相似文献   

15.
GaN layers and Al1−xInxN/AlN/GaN heterostructures have been studied by scanning probe microscopy methods. Threading dislocations (TDs), originating from the GaN (0 0 0 1) layer grown on sapphire, have been investigated. Using Current-Atomic Force Microscopy (C-AFM) TDs have been found to be highly conductive in both GaN and AlInN, while using semi-contact AFM (phase-imaging mode) indium segregation has been traced at TDs in AlInN/AlN/GaN heterostructures. It has been assessed that In segregation is responsible for high conductivity at dislocations in the examined heterostructures.  相似文献   

16.
We have studied Au/n-GaN Schottky barrier diodes. GaN surfaces have been prepared by cleaning in HCl and (NH4)2S prior to metal deposition. The zero-biased barrier heights and ideality factors obtained from the current-voltage characteristics differ from diode to diode, although all the samples were prepared identically. The statistical analysis for the reverse bias C-V data yielded mean value of (1.35±0.04) eV for Schottky barrier height of HCl treated sample and (1.20±0.03) eV for (NH4)2S sample, where 9 dots were considered from each cleaning method. It was found that the barrier height values obtained from the C−2-V (1.43 eV) and I-V characteristics (0.89 eV) are different from each other by 0.54 eV. The inhomogeneous barrier heights were found to be related to the effect of the high series resistance on diode parameters (Akkiliç et al., 2004) [1].  相似文献   

17.
Metal organic chemical vapor deposition (MOCVD) has been used to grow vanadium-doped GaN (GaN:V) on c-sapphire substrate using VCl4 as the V source. The as-grown GaN:V exhibited a saturated magnetic moment (Ms) of 0.28 emu/cm3 at room temperature. Upon high-temperature annealing treatment at 1100 °C for 7 min under N2 ambient, the Ms of the GaN:V increased by 39.28% to 0.39 emu/cm3. We found that rapid thermal annealing leads to a remarkable increase in surface roughness of the V-doped GaN as well as the electron concentration. The annealing also leads to a significant increase in the Curie temperature (TC), we have identified Curie temperatures about 350 K concluded from the difference between the field-cooled and zero-field-cooled magnetizations. Structure characterization by x-ray diffraction indicated that the ferromagnetic properties are not a result of secondary magnetic phases.  相似文献   

18.
The reverse current of lateral-type Schottky diodes fabricated on p-type homoepitaxial diamond was analyzed by changing the distance between Schottky and Ohmic electrodes and the metal materials in the Schottky electrodes. The maximum electric field at breakdown was 0.56 MV cm−1 for the Au Schottky contact and less than 0.26 MV cm−1 for the Al Schottky contact. The breakdown voltage depended on the electrode distance when the diamond surface was revealed in vacuum, whereas the Schottky diodes sustained the applied voltage of 500 V, corresponding to 0.69 MV cm−1, after covering of the diamond surface with an insulating liquid. Diamond surface protection is an indispensable technique for fabrication of high-voltage Schottky diodes based on diamond.  相似文献   

19.
The layered n-InSe(:Sn) single crystal samples have been cleaved from a large crystal ingot grown from non-stoichiometric melt by the Bridgman-Stockbarger method. It has been made the absorption measurements of these samples without Schottky contact under electric fields of 0.0 and 6000 V cm−1. The band gap energy value of the InSe:Sn has been calculated as 1.36 ± 0.01 eV (at 10 K) and 1.28 ± 0.01 eV (at 300 K) under zero electrical field, and 1.31 ± 0.01 eV (at 10 K) and 1.26 ± 0.01 eV (at 300 K) under 6000 Vcm−1. The current-voltage (I-V) characteristics of Au-Ge/InSe(:Sn)/In Schottky diodes have been measured in the temperature range 80-320 K with a temperature step of 20 K. An experimental barrier height (BH) Φap value of about 0.70 ± 0.01 eV was obtained for the Au-Ge/InSe(:Sn)/In Schottky diode at the room temperature (300 K). An abnormal decrease in the experimental BH Φb and an increase in the ideality factor n with a decrease in temperature have been explained by the barrier inhomogeneities at the metal-semiconductor interface. From the temperature-dependent I-V characteristics of the Au-Ge/InSe(:Sn)/In contact, that is, and A* as 0.94 ± 0.02 and 0.58 ± 0.02 eV, and 27 ± 2 and 21 ± 1 (A/cm2 K2), respectively, have been calculated from a modified versus 1/T plot for the two temperature regions. The Richardson constant values are about two times larger than the known value of 14.4 (A/cm2 K2) known for n-type InSe. Moreover, in the temperature range 80-320 K, we have also discussed whether or not the current through the junction has been connected with TFE.  相似文献   

20.
A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm2 while the conventional one exhibits 8.20 mΩ cm2 due to the decrease of a forward voltage drop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号