首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure and Nb-doped titanium oxide thin films were grown on sapphire substrates by pulsed-laser deposition in vacuum (10−7 mbar). The PLD growth leads to titanium oxide thin films displaying a high oxygen deficiency (TiO1.5) compared with the stoichiometric TiO2 compound. The structural and electrical properties (phase, crystalline orientation, nature and concentration of charge carriers, etc.) of these titanium oxide films were studied by XRD measurements and Hall effect experiments, respectively. The undoped TiO1.5 phase displayed a p-type semiconductivity. Doping this titanium oxide phase with Nb5+ leads to an n-type behaviour as is generally observed for titanium oxide films with oxygen deficiency (TiOx with 1.7 < x < 2). Multilayer homojunctions were obtained by the stacking of TiO1.5 (p-type) and Nb-TiO1.5 (n-type) thin films deposited onto sapphire substrates. Each layer is 75 nm thick and the resulting heterostructure shows a good transparency in the visible range. Finally, the I-V curves obtained for such systems exhibit a rectifying response and demonstrate that it is possible to fabricate p-n homojunctions based only on transparent conductive oxide thin films and on a single chemical compound (TiOx).  相似文献   

2.
Nanostructured titanium dioxide (ns-TiO2) films were grown by supersonic cluster beam deposition method. Transmission electron microscopy demonstrated that films are mainly composed by TiO2 nanocrystals embedded in an amorphous TiO2 phase while their electronic structure was studied by photoemission spectroscopy. The cluster assembled ns-TiO2 films are expected to exhibit several structural and chemical defects owing to the large surface to volume ratio of the deposited clusters. Ultraviolet photoemission spectra (hv = 50 eV) from the valence band unveil the presence of a restrained amount of surface Ti 3d defect states in the band gap, whereas Ti 2p core level X-ray photoelectron (hv = 630 eV) spectra do not manifestly disclose these defects.  相似文献   

3.
A dependence of structural properties of TiO2 films grown on both Si- and Ti-substrates by atomic layer deposition (ALD) at the temperature range of 250-300 °C from titanium ethoxide and water on the number of reaction cycles N was investigated using Fourier-transform infrared (FTIR) spectroscopy and X-Ray diffraction (XRD). TiO2 films grown on both Si- and Ti-substrates revealed amorphous structure at low values of N < 400. However, an increase of N up to values 400-3600 resulted in the growth of polycrystalline TiO2 with structure of anatase on both types of substrates and according to XRD-measurements the sizes of crystallites rose with the increase of N. The maximum anatase crystallite size for TiO2 grown on Ti-substrate was found to be on ∼35% lower in comparing with that for TiO2 grown on Si-substrate. A use of titanium methoxide as a Ti precursor with the ligand size smaller than in case of titanium ethoxide allowed to observe an influence of the ligand size on both the growth per cycle and structural properties of TiO2. The average growth per cycle of TiO2 deposited from titanium methoxide and water (0.052 ± 0.01 nm/cycle) was essentially higher than that for TiO2 grown from titanium ethoxide and water (0.043 ± 0.01 nm/cycle). Ligands of smaller sizes were found to promote the higher crystallinity of TiO2 in comparison with the case of using the titanium precursor with ligands of bigger sizes.  相似文献   

4.
Use of successive ionic layer adsorption and reaction (SILAR) method was preferred for the growth of amorphous titanium dioxide (TiO2) thin films at ambient temperature. Further, these films were annealed at 673 K for 2 h in air for structural improvement and characterized for structural, surface morphological, optical and electrical properties. An amorphous structure of TiO2 was retained even after annealing as confirmed from XRD studies. The spherical grains of relatively large size were compressed after annealing. A red shift in band gap energy and decrease in electrical resistivity were observed due to annealing treatment.  相似文献   

5.
In order to investigate the effect of thermal oxidation temperature on tin dioxide (SnO2), tin dioxide films were obtained on quartz substrates by vacuum evaporation of tin metal. The films were characterized by X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM), temperature dependent electrical resistivity measurement and optical absorption spectroscopy. The SEM images showed that the films are dense, continuous and are composed of nanoparticles and particle sizes are increased after thermal oxidation. From the X-ray measurement results, the films indicated two strong reflection peaks of tetragonal structure in the orientations of (1 0 1) and (2 0 0) at 2θ = 33.89° and 37.95°, respectively. Intensity of the peaks increased with increasing thermal oxidation temperature. We found resistivity values of about 10−4 Ω-cm. Optical absorption spectra of the films in the UV–Vis spectral range revealed that optical band gap (Eg) value of the films increases with increasing thermal oxidation temperature.  相似文献   

6.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

7.
Photocatalyst titanium dioxide (TiO2) thin films were prepared using sol-gel process. To improve the photosensitivity of TiO2 at visible light, transition metal of Fe was implanted into TiO2 matrix at 20 keV using the metal plasma ion implantation process. The primary phase of the Fe-implanted TiO2 films is anatase, but X-ray diffraction revealed a slight shift of diffraction peaks toward higher angles due to the substitutional doping of iron. The additional band gap energy levels were created due to the formation of the impurity levels (Fe-O) verified by X-ray photoelectron spectroscopy, which resulted in a shift of the absorption edge toward a longer wavelength in the absorption spectra. The optical band gap energy of TiO2 films was reduced from 3.22 to 2.87 eV with an increase of Fe ion dosages from 0 to 1 × 1016 ions/cm2. The band gap was determined by the Tauc plots. The photocatalysis efficiency of Fe-implanted TiO2 was assessed using the degradation of methylene blue under ultraviolet and visible light irradiation. The calculated density of states for substitutional Fe-implanted TiO2 was investigated using the first-principle calculations based on the density functional theory. A combined experimental and theoretical Fe-implanted TiO2 film was formed, consistent with the experimentally observed photocatalysis efficiency of Fe-implanted TiO2 in the visible region.  相似文献   

8.
A new concept of utilization of titanium dioxide matrix in electrocatalysis by admixing it with polyoxometallate modified gold nanoparticles is described here. The approach utilizes Keggin-type phosphododecamolybdate (PMo12O403−) adsorbates capable of modifying, activating and stabilizing Au nanoparticles of the sizes of 30-40 nm. Ultra-thin films of phosphomolybdates on nanostructured gold are characterized by well-defined fast (reversible) multi-electron electrochemical reactions. By dispersing platinum black over the Au-containing TiO2, the electrocatalytic activity of Pt nanoparticles towards oxidation of ethanol has been enhanced. Remarkable increases of electrocatalytic currents measured under voltammetric and chronoamperometric conditions have been observed. The most likely explanation takes into account improvement of overall conductivity (due to the presence of nanostructured gold) at the electrocatalytic interface (including TiO2-support), as well as and possibility of specific Pt-TiO2 or Pt-Au electronic interactions and existence of active hydroxyl groups (on titanium dioxide or polyoxometallate surfaces) in the vicinity of catalytic Pt sites.  相似文献   

9.
Ultra-thin titanium and titanium nitride films on silicon substrate were obtained by ion beam sputtering of titanium target in vacuum and nitrogen atmosphere, using argon ions with energy of 5 keV and 15 μA target current. Elemental composition and chemical state of obtained films were investigated by X-ray photoelectron spectroscopy with using Mg-Kα X-ray radiation (photon energy 1253.6 eV). It was shown that it is possible to form both ultra-thin titanium films (sputtering in vacuum) and ultra-thin titanium nitride films (sputtering in nitrogen atmosphere) in the same temperature conditions. Photoelectron spectra of samples surface, obtained in different steps of films synthesis, detailed spectra of photoelectron emission from Si 2p, Ti 2p, N 1s core levels and also X-ray photoelectron spectra of Auger electrons emission are presented.  相似文献   

10.
The crystallization of silicon rich hydrogenated amorphous silicon carbon films prepared by Plasma Enhanced Chemical Vapor Deposition technique has been induced by excimer laser annealing as well as thermal annealing. The excimer laser energy density (Ed) and the annealing temperature were varied from 123 to 242 mJ/cm2 and from 250 to 1200 °C respectively. The effects of the two crystallization processes on the structural properties and bonding configurations of the films have been studied. The main results are that for the laser annealed samples, cubic SiC crystallites are formed for Ed ≥ 188 mJ/cm2, while for the thermal annealed samples, micro-crystallites SiC and polycrystalline hexagonal SiC are observed for the annealing temperature of 800 and 1200 °C respectively. The crystallinity degree has been found to improve with the increase in the laser energy density as well as with the increase in the annealing temperature.  相似文献   

11.
Single-phase semiconducting iron disilicide (β-FeSi2) films on silicon substrate were fabricated by electron beam evaporation (EBE) technique. For preventing the oxidation of Fe film, silicon/iron/silicon sandwich structure films with different thickness of silicon and iron were deposited and then annealed at different temperatures. X-ray diffraction (XRD), Raman and Fourier transform infrared spectroscopy (FTIR) measurements were carried out to study the phase distribution and crystal quality of the films. Single-phase β-FeSi2 with high crystal quality was achieved after annealing at 800 °C for 5 h. An apparent direct bandgap Eg of approximately 0.85-0.88 eV was observed in the β-FeSi2 films. It is considered that the silicon/iron/silicon sandwich structure is suited for formation of single-phase β-FeSi2 with high crystal quality.  相似文献   

12.
Thermal oxidation temperature dependence of 4H-SiC MOS interface   总被引:1,自引:0,他引:1  
The thermal oxidation temperature dependence of 4H-silicon carbide (SiC) is systematically investigated using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage (C-V) measurements. When SiC is thermally oxidized, silicon oxycarbides (SiCxOy) are first grown and then silicon dioxide (SiO2) is grown. It is identified by XPS that the SiO2 films fall into two categories, called SiC-oxidized SiO2 and Si-oxidized SiO2 in this paper. The products depend on thermal oxidation temperature. The critical temperature is between 1200 and 1300 °C. The interface trap density (Dit) of the sample possessing Si-oxidized SiO2, at thermal oxidation temperature of 1300 °C, is lower than SiC-oxidized SiO2 at and below 1200 °C, suggesting that a decrease of the C component in SiO2 film and SiO2/SiC interface by higher oxidation temperature improves the metal-oxide-semiconductor (MOS) characteristics.  相似文献   

13.
The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.  相似文献   

14.
The continuous scaling down of devices dimensions, in silicon technology, imposes to replace silicon dioxide. Among the potential candidates for new capacitors, some perovskite structure materials (such as titanate or zirconate) show interesting characteristics. The first way to develop perovskite films is to use a mixture of two β-diketonates by varying the solution's cationic ratio. However, our previous results on SrZrO3 showed that a wide parametric study had to be carried on. Another way is to design novel heterometallic precursors that contain both cations on the same molecule. The ligands could be chosen so that peculiar evaporation and decomposition temperatures could be obtained.Thus, perovskite films (SrZrO3) were deposited on plane Si(1 0 0) substrates by direct liquid injection MOCVD from two original heterometallic precursors Sr2Zr2(OnPr)8(thd)4(nPrOH)2 and Sr2Zr2(thd)4(OiPr)8. The oxide films were deposited at substrate temperature ranging from 550 to 900 °C. At the lowest temperatures (550 and 600 °C) the as-deposited films were amorphous. After a postannealing at 700 °C for 1 h under N2/O2, the films deposited at 550 °C were crystallized in the SrZrO3 orthorhombic phase. Crystallographic and chemical structures were controlled applying grazing X-ray diffraction and infrared spectroscopy measurements. Results are discussed with respect to experimental synthesis conditions.  相似文献   

15.
Low-temperature silicon dioxide (SiO2) films were grown on silicon germanium (SiGe) surfaces using the liquid-phase deposition (LPD) method. The growth solutions of LPD-SiO2 are hydrofluorosilicic acid (H2SiF6) and boric acid (H3BO3). It was found that the growth rate increases with increasing temperature and concentration of H3BO3. The Auger electron spectroscopy profile shows that no pileup of Ge atoms occurs at the interface of SiO2/SiGe after the LPD-SiO2 growth. Al/LPD-SiO2/p-SiGe MOS capacitors were prepared to determine capacitance-voltage (C-V) and current-voltage (I-V) characteristics. In our experiments, a low leakage current density of 8.69 × 10−9 A/cm2 under a 2 MV/cm electric field was observed. Such a value is much smaller than those of plasma- and thermal-oxides as a result of no plasma damage and a lower growth temperature. Moreover, lower oxide charges and interface charge densities of 3.82 × 1010 cm−2 and 1.12 × 1011 eV−1 cm−2, respectively, were achieved in our LPD-SiO2 compared to direct photochemical-vapor-deposition-SiO2.  相似文献   

16.
The composite which contains Ag+ and nanosized hydroxyapatite with TiO2 was deposited onto titanium by dipping method. The morphology, chemical components and structures of the thin film were characterized by XRD, scanning electronic microscope (SEM) and energy dispersive X-ray analysis (EDX). Staphylococcus aureus and Escherichia coli were utilized to test the antibacterial effect. XRD results demonstrated that the films have characteristic diffraction peaks of pure HA. EDX results showed that the deposited films consisted of Ca, P, Ti, O and Ag, all of which distribute uniformly. With regard to the antibacterial effect, 98% of S. aureus and more than 99% of E. coli were killed after 24 h incubation and pictures of SEM showed obviously fewer cells on the surface with coating.  相似文献   

17.
Titanium oxynitride (TiNxOy) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiNxOy films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm2 to 7 W/cm2. The maximum deposition rate occurs, as the substrate bias is −40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiNxOy films deposited at power densities above 4 W/cm2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiNxOy films reach values as low as 0.98 g/m2-day-atm and 0.60 cm3/m2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al2O3 barrier films. Therefore, TiNxOy films are potential candidates to be used as a gas permeation barrier for PET substrate.  相似文献   

18.
The electronic spectra of the titanium monohalides, TiCl and TiBr, have been investigated in the blue-violet region using a laser ablation molecular beam spectrometer. Five subbands assigned as 4Γ5/2-X4Φ3/2 (0, 0), 4Γ5/2-X4Φ3/2 (1, 1), 4Γ5/2-X4Φ5/2 (0, 0), 4Γ7/2-X4Φ5/2 (0, 0) and 4Γ7/2-X4Φ7/2 (0, 0) were observed and recorded at both low and high-resolution for titanium monochloride. A Hund’s case (a) rotational analysis has been carried out for the 48Ti37Cl and 48Ti35Cl isotopic species, and polynomial analyses for these, as well as the 46Ti35Cl, 47Ti35Cl, 49Ti35Cl, and 50Ti35Cl isotopologues have been completed. The same spectral region yielded several molecular transitions for titanium monobromide, 10 of which were recorded at high resolution. Six of these have been attributed to a 4Γ-X4Φ electronic transition at 23 484 cm−1, while the remaining four have been assigned to a second 4Γ-X4Φ electronic transition at 23 613 cm−1. A Hund’s case (a) global analysis has been carried out for the 48Ti79Br and 48Ti81Br isotopologues.  相似文献   

19.
Porous TiO2 films were deposited on SiO2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m2/g was obtained for TiO2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.  相似文献   

20.
TiO2 thin films were prepared under various conditions by using a reactive RF sputtering technique. The structural, optical and electrical characteristics of the films have been investigated. All as-deposited films were amorphous. After annealing at T > 673 K, the crystallinity of the observed tetragonal anatase phase appeared improved. The optical band gap, determined by using Tauc plot, has been found to amount to 3.38 ± 0.03 and 3.21 ± 0.03 eV for the direct and indirect transition, respectively. Also the complex optical constants for the wavelength range 300-2500 nm are reported. Using the two-point probe technique, the dark resistivity has been measured as a function of the film thickness, d. The resistivity, ρ, of the samples has been found to decrease markedly with increasing thickness, but only for d < 100 nm. The behaviour of ρd versus d was found to fit properly with the Fuchs and Sondheimer relation with parameters ρo = 4.95 × 106 Ω cm and mean free path, l = 310 ± 2 nm. The log ρ versus 1/T curves show three distinct regions with values for the activation energy of 0.03 ± 0.01, 0.17 ± 0.01 and 0.50 ± 0.02 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号