首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用单极子天线对静电放电产生的电磁脉冲进行了实验研究。测量表明, 静电放电电磁脉冲辐射场为脉冲持续时间百纳秒的窄脉冲,但在距离放电源几米以内,其场强很大,典型值可达千伏每米量级, 其频谱主要分布在几十到几百兆赫,典型的频谱上限值可以达到几个吉赫。  相似文献   

2.
静放电电磁脉冲模拟装置   总被引:1,自引:0,他引:1  
介绍了静电放电电磁脉冲(ESD EMP)的特性,研究了用ESD模拟器产生ESD EMP的方法,并给出了ESD EMP的时域波形和频谱。在研究ESD模拟器的基础上,首次通过ESD模拟器和GTEM室的结合,在GTEM室内产生了均匀的,重复性和线性好的ESD EMP。实验表明,用这种能够实验对静电放电电磁脉冲的实验室模拟,实验了人们用GTEM室产生ESD EMP的梦想。  相似文献   

3.
4.
显示屏是人机交互的重要部件,当人体静电放电发生在显示屏表面时,有可能导致软硬故障。为了研究显示屏空气式静电放电实验特性,通过一个自制的装置对显示屏空气式静电放电电流和通过显示屏的位移电流进行了实验测量。研究发现:放电电流峰值随接近速度的增加而增加,上升时间随接近速度的增加而减小。在±10~±12 kV电压范围,受电弧长度的影响,上升时间增大,电流峰值变小。随着测量点与放电点之间距离的增大,位移电流波形峰值减小、上升时间增大,正极性放电峰值更大且扩散范围更广,而负极性放电上升时间增大更加明显。由位移电流波形及其分布可以计算出电荷密度。电荷密度随距离放电位置距离的增大而减小。与正极性相比,尽管负极性放电电流峰值较低,但电荷密度较高,说明负极性放电具有造成更高等级损伤风险的危害。  相似文献   

5.
高玲  周晖 《物理实验》2004,24(10):33-37,40
通过对静电放电火花点火过程的物理特征研究,分析与总结了典型静电放电火花的点燃能力.根据放电火花的产生条件和形状特点,静电放电火花分为电晕放电、刷形放电、料仓堆表面放电、人体放电、火花放电和传播型尉形放电6种典型放电类型.根据静电放电火花的火花空间分布范围和火花持续时间,研究了静电放电火花点燃可燃物的能力.典型静电放电火花的实际点火能量为:电晕放电不大于0.025mJ,刷形放电不大于3mJ,料仓堆表面放电不大于10mJ.人体放电不大于30mJ,火花放电不大于1J,传播型刷形放电不大于10J.  相似文献   

6.
静电防护研究与进展   总被引:12,自引:0,他引:12  
刘尚合  谭伟 《物理》2000,29(5):304-307
文章综述了形成静电危害的基本条件和静电放电作用机理、静电测试技术、静电放电理论模型与散电放电模拟技术及静电防护理论与技术等方面的研究现状和该领域当前研究的热点与进展。  相似文献   

7.
阮方鸣 《物理实验》2005,25(10):14-16
使用2种静电放电模拟器,在空气放电模式下以任意速度向靶运动并进行放电,同时测量瞬时放电电流波形,考察放电电流上升时间与峰值电流的关系.结果发现,峰值电流和充电电压的比值与放电电流的上升时间存在着指数关系:Iptr^ξ/Vc=const..  相似文献   

8.
谢喜宁  胡小锋 《强激光与粒子束》2019,31(6):063205-1-063205-5
近年来,与静电放电(ESD)领域相关联的气体放电理论、材料科学和电测技术等新兴学科的不断研究和发展,已逐渐由实验科学阶段走向实际应用阶段。同时,人们也逐渐发现静电放电给人类造成的危害是十分惊人的,它不仅能够影响人类的正常生活,更是限制了自动化生产水平的提高。基于传统静电放电的模拟装置设备单一、功能局限,无法满足静电放电全方位、多用途的实验要求,为解决这一问题,设计和实现了包含电极模拟、方位变换、电路传输的完整的实验模拟装置。该装置主要由底座、支撑架、金属球、放电针、绝缘环、方位表盘等6部分组成,能够满足不同极化方向电磁场条件下的实验要求,同时还能够实现对不同高度、不同位置条件下的电磁场的基本极化方向进行判断识别。该系统具有一定的实验创新性和先进性,能够有效地满足各类电磁实验的需要,为研究电磁诱发静电放电实验提供了有力的硬件支持。  相似文献   

9.
黄久生 《物理》2000,29(10):620-622,614
分析了静电放电(ESD)辐射场的偶极子模型。用高采样速率数字示波器和定做的宽带电磁与磁场探头测量了计算机操作中人体静电放电产生的瞬态电场与磁场。用FFT分析了静电放电辐射场的频谱。研究了静民放电辐射场对某电路高频信号的影响。研究结果表明,即使是很低电压(2kV)的静电放电,其辐射近场的电场达几百V/m,磁场可达几十A/m静电放电辐射场的频谱极宽,从数兆赫到数千兆赫。静电放电对高频电路的试验结果表明,若不采取有效的防护措施,人体静电放电辐射电磁场会对电路造成一定的影响,如对集成电路与元器件造成“潜在效应”的损害,对电路造成电磁干扰,甚至损坏电子器件。  相似文献   

10.
微波低噪声晶体管电磁脉冲敏感端对研究   总被引:3,自引:0,他引:3       下载免费PDF全文
 在研究电磁脉冲对微电子器件作用效应的过程中,针对三种不同型号的微波低噪声硅半导体器件进行了电磁脉冲(静电放电和方波电磁脉冲)直接注入的试验,结果发现该类器件对电磁脉冲最敏感的端对并不是EB结(发射极-基极),而是CB结(集电极-基极)。通过对器件结构与放电过程的分析,分别得出了CB结、EB结的损伤机理:随放电电压的增大,热载流子撞击界面,使流经界面处的少数载流子复合速度增加,少数载流子在界面处及界面附近被复合,从而降低了器件的电流放大系数。而无论从哪个结注入,器件完全失效均是由热二次击穿造成。从而更进一步地证明了CB结比EB结更敏感。  相似文献   

11.
本文主要研究了直流电场对冷态注入氮气气泡和R113沸腾气泡行为的影响.利用高速摄像机拍摄了冷态注入气泡和热态沸腾气泡在不同场强作用下的实验图像,并对气泡的脱离进行了定量分析.实验结果表明:注入氮气气泡和沸腾气泡沿电场方向显著伸长,其脱离长径比随着场强升高而增大,并且电场对沸腾气泡伸长行为的影响更显著.此外,注入气泡和沸腾气泡的脱离体积随着场强增大都具有减小的趋势,而且注入气泡体积随场强减小的行为更明显.  相似文献   

12.
为了测量纳秒级前沿的电磁脉冲电场,研制了一种基于现场可编程门阵列(FPGA)的宽频带电磁脉冲电场测量系统,该系统采用单极子天线作为电场探头的接收天线,高速AD采集调理电路输出的电压信号,由FPGA接收AD采样的数据并保存至DDR2和FLASH存储器中;分析了系统的整体方案;对系统的信号调理、采集的触发方式、FPGA控制以及干扰屏蔽等关键技术进行了重点分析;通过电场探头、电磁脉冲模拟器、PTEM暗室、衰减器以及示波器进行了性能和功能验证实验;利用软件将电场探头和示波器测得的信号进行处理和对比;实验表明,所研制的电场探头可以测量前沿大于2.5 ns、电场强度为0~50 kV/m的脉冲电场,系统线性度好,体积小,抗干扰性能好,测量准确性高。  相似文献   

13.
静电场与涡旋电场无限大平面的电通量   总被引:1,自引:0,他引:1  
讨论了静电场和涡旋电场在无限大平面上的电通量。提出了关于涡旋电场无限大平面电通量等于零的假设。  相似文献   

14.
本文描述一种新颖的ECRF天线,简述了它的原理及所进行的实验。基于互逆性原理,首先利用Vlasov天线的逆过程获得了一个圆模式输出的测试用微波源。在此基础上,对该天线的正过程进行了实验与测试,得到了几乎完全线极化的天线辐射场分布。并将实验结果与理论结果进行了比较与分析。  相似文献   

15.
非线性光导开关的实验研究   总被引:2,自引:2,他引:2  
石顺祥  孙艳玲 《光子学报》1998,27(12):1078-1082
本文简要介绍非线性光导开关的工作原理,重点报道作者对非线性光导开关输出特性的实验研究.比较了光导开关线性和非线性工作的输出特性,给出了非线性光导开关的输出电脉冲波形,研究了影响非线性光导开关输出电脉冲上升时间、延迟时间的因素,测得了偏压阈值与激励光脉冲能量阈值的关系,指出利用非线性光导开关研制成一种全新的、固态化的高压、高功率超短电脉冲产生器的可能性.  相似文献   

16.
本文在实验室中以蜡烛火焰为研究对象,研究采用辐射图像处理技术重建蜡烛三维温度场。并采用细丝热电偶实测火焰局部温度,对蜡烛火焰三维温度场可视化的结果进行了比较。结果表明,火焰高温区的重建温度是合理的,此方法能够很好地重建单峰、双峰三维温度分布。进一步证实了基于火焰图像处理技术实现三维温度场可视化的可行性。  相似文献   

17.
浅谈“电流场模拟静电场”实验中的二场的比拟   总被引:1,自引:0,他引:1  
本讨论了“用稳恒电流场模拟静电场”实验中的二场比拟的依据和条件。  相似文献   

18.
探讨惠斯登电桥测量灵敏度与电桥端电压、电桥桥臂电阻值、电桥平衡监测仪表内阻以及电桥桥臂电阻比率的关系,实验结果与理论分析相符。  相似文献   

19.
牙齿化石中由辐照产生的陷阱电子的热稳定性研究   总被引:2,自引:1,他引:2  
本文对周口店北京猿人遗址的动物牙齿化石进行了辐照产生的陷阱捕获电子的热稳定性研究和釉质样品及牙质样品的热稳定性对比实验。得到釉质样品中g=2.0016 ESR峰的寿命为7.1×106年(20℃)。说明了取该峰进行ESR年代测定的可信性和用釉质样品进行ESR年代测定的必要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号