首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.  相似文献   

2.
The concerted proton-electron transfer (CPET) oxidation of phenol with water (in water) and hydrogen phosphate as proton acceptors provides a good example for testing the consistency of the electrochemical and homogeneous approaches to a reaction, the comprehension of which raises more mechanistic and kinetic challenges than that of a simple outer-sphere electron transfer. Comparison of the intrinsic kinetic characteristics (obtained at zero driving force of the CPET reaction) shows that consistency is indeed observed after a careful identification and quantitation of side factors (electrical work terms, image force effects). Water (in water) appears as a better intrinsic proton acceptor than hydrogen phosphate in both cases in terms of reorganization energy and pre-exponential factor, corroborating the mechanism by which electron transfer is concerted with Grotthus-type proton translocation in water. Detailed compared analysis of the approaches also revealed that modest but significant electric field effects may be at work in the electrochemical case. Comparison with phenoxide ion oxidation, taken as a reference outer-sphere electron transfer, points to a CPET precursor complex that possesses a precise spatial structure allowing the formation of one or several H-bonds as required by the occurrence of the CPET reaction, thus decreasing considerably the number of efficient collisions compared with those undergone by structureless spherical reactants.  相似文献   

3.
Proton‐coupled electron transfer (PCET) was investigated in three covalent donor–bridge–acceptor molecules with different bridge lengths. Upon photoexcitation of their Ru(bpy)32+ (bpy=2,2′‐bipyridine) photosensitizer in acetonitrile, intramolecular long‐range electron transfer from a phenolic unit to Ru(bpy)32+ occurs in concert with release of the phenolic proton to pyrrolidine base. The kinetics of this bidirectional concerted proton–electron transfer (CPET) reaction were studied as a function of phenol–Ru(bpy)32+ distance by increasing the number of bridging p‐xylene units. A distance decay constant (β) of 0.67±0.23 Å?1 was determined. The distance dependence of the rates for CPET is thus not significantly steeper than that for ordinary (i.e., not proton coupled) electron transfer across the same bridges, despite the concerted motion of oppositely charged particles into different directions. Long‐range bidirectional CPET is an important reaction in many proteins and plays a key role in photosynthesis; our results are relevant in the context of photoinduced separation of protons and electrons as a means of light‐to‐chemical energy conversion. This is the first determination of β for a bidirectional CPET reaction.  相似文献   

4.
Reaction of trans-1,4-bis(trimethylsilylethynyl)cyclohexa-2,5-diene-1,4-diol with n-BuLi followed by methanesulfonyl chloride resulted in the formation of a dark red solid, which was identified as 2,5-bis(trimethylsilylethynyl)oxepin. Deprotection of the silyl groups resulted in the formation of 2,5-diethynyloxepin, a red, shock sensitive solid. Reaction of a differentially substituted cyclohexa-2,5-diene-1,4-diol gave a mixture of 2,5-diethynyl substituted oxepins.  相似文献   

5.
A heme model system has been developed in which the heme-propionate is the only proton donating/accepting site, using protoporphyrin IX-monomethyl esters (PPIX(MME)) and N-methylimidazole (MeIm). Proton-coupled electron transfer (PCET) reactions of these model compounds have been examined in acetonitrile solvent. (PPIX(MME))Fe(III)(MeIm)(2)-propionate (Fe(III)~CO(2)) is readily reduced by the ascorbate derivative 5,6-isopropylidine ascorbate to give (PPIX(MME))Fe(II)(MeIm)(2)-propionic acid (Fe(II)~CO(2)H). An excess of the hydroxylamine TEMPOH or of hydroquinone similarly reduces Fe(III)~CO(2), and TEMPO and benzoquinone oxidize Fe(II)~CO(2)H to return to Fe(III)~CO(2). The measured equilibrium constants, and the determined pK(a) and E(1/2) values, indicate that Fe(II)~CO(2)H has an effective bond dissociation free energy (BDFE) of 67.8 ± 0.6 kcal mol(-1). In these PPIX models, electron transfer occurs at the iron center and proton transfer occurs at the remote heme propionate. According to thermochemical and other arguments, the TEMPOH reaction occurs by concerted proton-electron transfer (CPET), and a similar pathway is indicated for the ascorbate derivative. Based on these results, heme propionates should be considered as potential key components of PCET/CPET active sites in heme proteins.  相似文献   

6.
Benzodiazepines are privileged scaffolds in medicinal chemistry, but enantiopure examples containing quaternary stereogenic centers are extremely rare. We demonstrate that installation of the di(p-anisyl)methyl (DAM) group at N1 of 1,4-benzodiazepin-2-ones and 1,4-benzodiazepine-2,5-diones derived from enantiopure proteinogenic amino acids allows retentive replacement of the C3-proton via a deprotonation/trapping protocol. A wide variety of carbon and nitrogen electrophiles function well in this reaction, providing the corresponding quaternary benzodiazepines with excellent enantioselectivity. Deprotonation/trapping experiments on a pair of diastereomeric 1,4-benzodiazepine-2,5-diones provide evidence for a key role of conformational chirality in these enantioselective reactions. Acidic removal of the DAM group is fast and high-yielding and can be performed selectively in the presence of a N-Boc indole. Thus the synthesis of quaternary benzodiazepines with diverse N1 functionality can now be accomplished.  相似文献   

7.
Aromatic amino acids such as l -tyrosine and l -tryptophan are deployed in natural systems to mediate electron transfer (ET) reactions. While tyrosine oxidation is always coupled to deprotonation (proton-coupled electron-transfer, PCET), both ET-only and PCET pathways can occur in the case of the tryptophan residue. In the present work, two novel conjugates 1 and 2 , based on a SnIV tetraphenylporphyrin and SnIV octaethylporphyrin, respectively, as the chromophore/electron acceptor and l -tryptophan as electron/proton donor, have been prepared and thoroughly characterized by a combination of different techniques including single crystal X-ray analysis. The photophysical investigation of 1 and 2 in CH2Cl2 in the presence of pyrrolidine as a base shows that different quenching mechanisms are operating upon visible-light excitation of the porphyrin component, namely photoinduced electron transfer and concerted proton electron transfer (CPET), depending on the chromophore identity and spin multiplicity of the excited state. The results are compared with those previously described for metal-mediated analogues featuring SnIV porphyrin chromophores and l -tyrosine as the redox active amino acid and well illustrate the peculiar role of l -tryptophan with respect to PCET.  相似文献   

8.
A number of unanticipated transformations were observed when various 2,5-diphenyl-1,4-dithiin sulfones were treated with sodium azide. These include a fragmentation to give 1,2-dicyano-1,2-diphenylethen, the formation of 2,5-dipehnyl-1,4-thiazine-1,1-dioxide, and the rearrangement of 3-bromo-2,5-diphenyl-1,4-dithiin-1,1-dioxide to its 2-bromo- isomer. Possible mechanism for these unusual reactions are discussed.  相似文献   

9.
In 2001, Lehmann and Evans (J. Phys. Chem. B, 2001, 105, 8877-8884) reported that the electrochemical reduction of a hydrogen-bonded complex between a proton donor and the anion radical of 3,5-di-tert-butyl-1,2-benzoquinone in acetonitrile proceeded by a concerted proton-electron transfer (CPET) reaction in which electron transfer from the electrode and proton transfer from proton donor to the quinone moiety occurred concertedly. Support for this conclusion was based upon ruling out both of the competing two-step processes, electron transfer followed by proton transfer (EP) and proton transfer followed by electron transfer (PE). In the course of studies of related compounds it was decided to reinvestigate the reduction of 3,5-di-tert-butyl-1,2-benzoquinone. It was discovered that the earlier conclusion that a CPET reaction was occurring was tenable only for the particular electrolyte that was used, tetrabutylammonium hexafluorophosphate and for lower concentrations of the quinone. Even the small change of carrying out the reduction of the quinone in the presence of water with tetramethylammonium hexafluorophosphate as electrolyte, produced voltammograms with clear signatures that the process was EP rather than CPET. Even more dramatic effects were seen with cesium, potassium or sodium ions in the electrolyte. A general reaction scheme to explain results with all electrolytes will be presented.  相似文献   

10.
The serendipitous formation of 2,5-dimethoxy- 1,4-benzoquinone is reported from the reaction of 1,4-benzoquinone with methanol, DABCO, and paraformaldehyde. This monomer, and its di-n-butoxy analog, are also available from 2,5-dihydroxy-1,4-benzoquinone. These materials are capable of novel polycondensation reactions with diamines such as 1,6-hex-anediamine. Use of m-crexsol as polymerization solvent gave a dark, insoluble product while various amide solvents lead to orange or pink polymers that had average degrees of polymerization from 5 up to >30. These polymers, Plus model compounds obtained from 1-aminopropane and N,N'- dimethyl-1,6-hexanediamine, were characterized by FTIR, solution, and solid-state NMR.  相似文献   

11.
The kinetics and mechanism of proton-coupled electron transfer (PCET) from a series of phenols to a laser flash generated [Ru(bpy)(3)](3+) oxidant in aqueous solution was investigated. The reaction followed a concerted electron-proton transfer mechanism (CEP), both for the substituted phenols with an intramolecular hydrogen bond to a carboxylate group and for those where the proton was directly transferred to water. Without internal hydrogen bonds the concerted mechanism gave a characteristic pH-dependent rate for the phenol form that followed a Marcus free energy dependence, first reported for an intramolecular PCET in Sj?din, M. et al. J. Am. Chem. Soc. 2000, 122, 3932-3962 and now demonstrated also for a bimolecular oxidation of unsubstituted phenol. With internal hydrogen bonds instead, the rate was no longer pH-dependent, because the proton was transferred to the carboxylate base. The results suggest that while a concerted reaction has a relatively high reorganization energy (lambda), this may be significantly reduced by the hydrogen bonds, allowing for a lower barrier reaction path. It is further suggested that this is a general mechanism by which proton-coupled electron transfer in radical enzymes and model complexes may be promoted by hydrogen bonding. This is different from, and possibly in addition to, the generally suggested effect of hydrogen bonds on PCET in enhancing the proton vibrational wave function overlap between the reactant and donor states. In addition we demonstrate how the mechanism for phenol oxidation changes from a stepwise electron transfer-proton transfer with a stronger oxidant to a CEP with a weaker oxidant, for the same series of phenols. The hydrogen bonded CEP reaction may thus allow for a low energy barrier path that can operate efficiently at low driving forces, which is ideal for PCET reactions in biological systems.  相似文献   

12.
2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant. Kinetic analysis revealed unusual rate-driving force relationships. Our analysis indicated a mechanism of multi-site concerted proton–electron transfer (MS-CPET) for all of these reactions. More recently, an alternative interpretation of the kinetic data was proposed to explain the unusual rate-driving force relationships, invoking a crossover from CPET to a stepwise mechanism with an initial intramolecular proton transfer (PT) (Costentin, Savéant, Chem. Sci., 2020, 11, 1006). Here, we show that this proposed alternative pathway is untenable based on prior and new experimental assessments of the intramolecular PT equilibrium constant and rates. Measurement of the fluorenyl 9-C–H pKa, H/D exchange experiments, and kinetic modelling with COPASI eliminate the possibility of a stepwise mechanism for C–H oxidation in the fluorenyl benzoate series. Implications for asynchronous (imbalanced) MS-CPET mechanisms are discussed with respect to classical Marcus theory and the quantum-mechanical treatment of concerted proton–electron transfer.

2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant.  相似文献   

13.
The reactions of trichloromethylarenes with excess hydrazine hydrate in ethanol gives symmetrical 2,5-diaryl-1,3,4-oxadiazoles in 68–96% yields. The reaction of 1,4-bis(trichloromethyl)benzene with acylhydrazines in an ethanol-pyridine mixture gives the corresponding substituted or unsubstituted 1,4-phenylenebis-1,3,4-oxadiazoles in 35–51% yields. The mass spectra of 2,5-diaryl-1,3,4-oxadiazoles and 1,4-phenylenebis-1,3,4-oxadiazoles were studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2309–2316, November, 1998.  相似文献   

14.
The competition between stepwise and concerted (CPET) pathways in proton-coupled electron-transfer reactions in water is discussed on thermodynamic and kinetic bases. In the case where water is the proton acceptor, the CPET pathway may compete favorably with the stepwise pathway. The main parameter of the competition is pK of the oxidized form of the substrate being smaller or larger than 0. The driving force of the forward reaction is however independent of pH, despite the equilibrium redox potential of the proton-electron system being a function of pH. At high pH values, CPET reactions involving OH- as proton acceptor may likewise compete favorably with stepwise pathways. The overall reaction rate constant is an increasing function of pH, not because the driving force depends on pH but because OH- is a reactant. In buffered media, association of the substrate with the basic components of the buffer offers an alternative CPET route; the driving force comes closer to that offered by the pH-dependent equilibrium redox potential.  相似文献   

15.
Conclusions In reactions with nucleophilic reagents, 4-chlorohexafluorodienyl fluorosulfate and hexafluoro-2,5-hexadienylene 1,4-bis(fluorosulfate) display a dual reactivity due to attack of the nucleophile at both the sulfur atom and the carbon atom to which the fluorosulfate groups is attached.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 375–379, February, 1987.  相似文献   

16.
An efficient route towards the synthesis of 2,5-diamino-2,5-dideoxy-1,4-3,6-dianhydroiditol 4 has been developed resulting in significant improvements in both isolated yields and purity when compared to literature procedures. As a consequence, resin-grade 2,5-diamino-2,5-dideoxy-1,4-3,6-dianhydroiditol 4 has become available for laboratory scale step-growth polymer synthesis. Additionally, an interesting renewable chiral 2-amino-2-deoxy-1,4-3,6-dianhydroiditol 10, has been isolated.  相似文献   

17.
采用密度泛函B3LYP方法,6-311+g(d,p)基组,对甲酸与质子性溶剂分子形成的HCOOH-S_1-S_2(S_1和S_2分别为H_2O和NHF2)复合物在气相时发生的基态三质子转移反应过程进行了理论研究.4个甲酸复合物HCOOH-H_2O-H_2O,HCOOH-NHF2-NHF2,HCOOH-H_2O-NHF2及HCOOH-NHF2-H_2O中发生的三质子转移反应都是以异步协同质子迁移方式进行的.甲酸复合物中的氢键链组成和连接方式对基态三质子转移反应能垒有显著影响.HCOOH-S_1-S_2复合物中氢键链的质子接受能力可以表示为a×β1+b×β2(a+b=1).当a=0.45,b=0.55时,HCOOH-S_1-S_2中氢键链的质子接受能力和HCOOH-S_1-S_2复合物中的质子转移反应能垒成线性关系.氢键链的质子接收能力越强,反应能垒越低.  相似文献   

18.
A novel and efficient method was developed for the liquid-phase synthesis of N1,4-disubstituted-benzodiazepine-2,5-diones with 2-chloro-5-nitrobenzoic acid as initiating material via 4 step reactions containing esterification,Ulmn reaction,acylation,alkylation and cyclization. The reaction conditions were mild and the overall yields of the products ranged from 45% to 71%.  相似文献   

19.
Concerted proton and electron transfers (CPET) currently attract considerable theoretical and experimental attention, notably in view of their likely involvement in many enzymatic reactions. Electrochemistry, through techniques such as cyclic voltammetry, can provide a quite effective access to CPET in terms of diagnosis and quantitative kinetic characterization. The relationships expressing the rate constant of an electrochemical CPET are given. Besides the CPET standard potential, it depends on two main factors. One is the reorganization energy, which appears as the sum of an intramolecular contribution and two solvent reorganization energies corresponding to proton and electron transfers, respectively. The other is the pre-exponential factor that mainly depends on proton tunneling through the activation barrier. Procedures for estimating these various factors as well as the H/D kinetic isotope effect are described. Application of the theory is illustrated by the experimental results obtained for the cyclic voltammetric reduction of the water-superoxide ion complex in dimethylformamide and acetonitrile.  相似文献   

20.
Condensation of 1,4-diacetylpiperazine-2,5-dione with aldehydes has been applied to the synthesis of albonoursin and unsymmetrical 3,6-diarylidenepiperazine-2,5-diones. The reaction has been extended to 1,4-diacetyl-3,6-dimethylpiperazine-2,5-dione, which gives derivatives of 2-methyl-3- phenylserine. The mechanism and stereochemistry are discussed; cis 1-acetyl-3-isobutylidene- piperazine-2,5-dione has been isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号