共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolving fuzzy rule based controllers using genetic algorithms 总被引:9,自引:0,他引:9
The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS 1 are reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic routing in computer networks) is also described and experimental results are presented. 相似文献
2.
We propose two general stopping criteria for finite length, simple genetic algorithms based on steady state distributions, and empirically investigate the impact of mutation rate, string length, crossover rate and population size on their convergence. Our first stopping criterion is based on the second largest eigenvalue of the genetic algorithm transition matrix, and the second stopping criterion is based on minorization conditions. 相似文献
3.
A Tabu Search Algorithm for the Quadratic Assignment Problem 总被引:1,自引:0,他引:1
Tabu search approach based algorithms are among the widest applied to various combinatorial optimization problems. In this paper, we propose a new version of the tabu search algorithm for the well-known problem, the quadratic assignment problem (QAP). One of the most important features of our tabu search implementation is an efficient use of mutations applied to the best solutions found so far. We tested this approach on a number of instances from the library of the QAP instances—QAPLIB. The results obtained from the experiments show that the proposed algorithm belongs to the most efficient heuristics for the QAP. The high efficiency of this algorithm is also demonstrated by the fact that the new best known solutions were found for several QAP instances. 相似文献
4.
COSEARCH: A Parallel Cooperative Metaheuristic 总被引:1,自引:0,他引:1
In order to design a well-balanced metaheuristic for robustness, we propose the COSEARCH approach which manages the cooperation
of complementary heuristic methods via an adaptive memory which contains a history of the search already done. In this paper,
we present the idiosyncrasies of the COSEARCH approach and its application for solving large scale instances of the quadratic
assignment problem (QAP). We propose an original design of the adaptive memory in order to focus on high quality regions of
the search and avoid attractive but deceptive areas. For the QAP, we have hybridized three heuristic agents of complementary
behaviours: a Tabu Search is used as the main search algorithm, a Genetic Algorithm is in charge of the diversification and
a Kick Operator is applied to intensify the search. The evaluations have been executed on large scale network of workstations
via a parallel environment which supports fault tolerance and adaptive dynamic scheduling of tasks. 相似文献
5.
Modifications in crossover rules and localization of searches are suggested to the real coded genetic algorithms for continuous global optimization. Central to our modifications is the integration of different crossover rules within the genetic algorithm. Numerical experiments using a set of 50 test problems indicate that the resulting algorithms are considerably better than the previous version considered and offer a reasonable alternative to many currently available global optimization algorithms, especially for problems requiring ‘direct search type’ methods. 相似文献
6.
This paper proposes a novel metaheuristics approach to find the global optimum of continuous global optimization problems with box constraints. This approach combines the characteristics of modern metaheuristics such as scatter search (SS), genetic algorithms (GAs), and tabu search (TS) and named as hybrid scatter genetic tabu (HSGT) search. The development of the HSGT search, parameter settings, experimentation, and efficiency of the HSGT search are discussed. The HSGT has been tested against a simulated annealing algorithm, a GA under the name GENOCOP, and a modified version of a hybrid scatter genetic (HSG) search by using 19 well known test functions. Applications to Neural Network training are also examined. From the computational results, the HSGT search proved to be quite effective in identifying the global optimum solution which makes the HSGT search a promising approach to solve the general nonlinear optimization problem. 相似文献
7.
A learning process for fuzzy control rules using genetic algorithms 总被引:10,自引:0,他引:10
The purpose of this paper is to present a genetic learning process for learning fuzzy control rules from examples. It is developed in three stages: the first one is a fuzzy rule genetic generating process based on a rule learning iterative approach, the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules, removing the redundant fuzzy rules, and the thrid one is a tuning process for adjusting the membership functions of the fuzzy rules. The three components of the learning process are developed formulating suitable genetic algorithms. 相似文献
8.
Zvi Drezner 《Operations Research Letters》2005,33(5):475-480
We introduce the compounded genetic algorithm. We propose to run a quick genetic algorithm several times as Phase 1, and compile the best solutions in each run to create a starting population for Phase 2. This new approach was tested on the quadratic assignment problem with very good results. 相似文献
9.
Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem 总被引:37,自引:0,他引:37
Ibrahim Hassan Osman 《Annals of Operations Research》1993,41(4):421-451
The vehicle routing problem (VRP) under capacity and distance restrictions involves the design of a set of minimum cost delivery routes, originating and terminating at a central depot, which services a set of customers. Each customer must be supplied exactly once by one vehicle route. The total demand of any vehicle must not exceed the vehicle capacity. The total length of any route must not exceed a pre-specified bound. Approximate methods based on descent, hybrid simulated annealing/tabu search, and tabu search algorithms are developed and different search strategies are investigated. A special data structure for the tabu search algorithm is implemented which has reduced notably the computational time by more than 50%. An estimate for the tabu list size is statistically derived. Computational results are reported on a sample of seventeen bench-mark test problems from the literature and nine randomly generated problems. The new methods improve significantly both the number of vehicles used and the total distances travelled on all results reported in the literature. 相似文献
10.
The clustered traveling salesman problem is an extension of the classical traveling salesman problem where the set of vertices is partitioned into clusters. The objective is to find a least cost Hamiltonian cycle such that the vertices of each cluster are visited contiguously and the clusters are visited in a prespecified order. A tabu search heuristic is proposed to solve this problem. This algorithm periodically restarts its search by merging two elite solutions to form a new starting solution (in a manner reminiscent of genetic algorithms). Computational results are reported on sets of Euclidean problems with different characteristics. 相似文献
11.
Veronique SelsMario Vanhoucke 《European Journal of Operational Research》2011,215(3):512-523
This paper presents a genetic algorithm and a scatter search procedure to solve the well-known job shop scheduling problem. In contrast to the single population search performed by the genetic algorithm, the scatter search algorithm splits the population of solutions in a diverse and high-quality set to exchange information between individuals in a controlled way. The extension from a single to a dual population, by taking problem specific characteristics into account, can be seen as a stimulator to add diversity in the search process. This has a positive influence on the important balance between intensification and diversification. Computational experiments verify the benefit of this diversity on the effectiveness of the meta-heuristic search process. Various algorithmic parameters from literature are embedded in both procedures and a detailed comparison is made. A set of standard instances is used to compare the different approaches and the best obtained results are benchmarked against heuristic solutions found in literature. 相似文献
12.
This paper presents a genetic algorithms (GA) simulation approach in solving a multi-attribute combinatorial dispatching (MACD) decision problem in a flow shop with multiple processors (FSMP) environment. The simulation is capable of modeling a non-linear and stochastic problem. GA are one of the commonly used metaheuristics and are a proven tool for solving complex optimization problems. The proposed GA simulation approach addresses a complex MACD problem. Its solution quality is illustrated by a case study from a multi-layer ceramic capacitor (MLCC) manufacturing plant. Because GA search results are often sensitive to the search parameters, this research optimized the GA parameters by using regression analysis. Empirical results showed that the GA simulation approach outperformed several commonly used dispatching rules. The improvements are ranging from 33% to 61%. On the other hand, the increased shop-floor-control complexity may hinder the implementation of the system. Finally, future research directions are discussed. 相似文献
13.
Tommaso Schiavinotto Thomas Stützle 《Journal of Mathematical Modelling and Algorithms》2004,3(4):367-402
The linear ordering problem is an NP-hard problem that arises in a variety of applications. Due to its interest in practice, it has received considerable attention and a variety of algorithmic approaches to its solution have been proposed. In this paper we give a detailed search space analysis of available benchmark instance classes that have been used in various researches. The large fitness-distance correlations observed for many of these instances suggest that adaptive restart algorithms like iterated local search or memetic algorithms, which iteratively generate new starting solutions for a local search based on previous search experience, are promising candidates for obtaining high performing algorithms. We therefore experimentally compared two such algorithms and the final experimental results suggest that, in particular, the memetic algorithm is a new state-of-the-art approach to the linear ordering problem. 相似文献
14.
This paper proposes a new crossover operator called two-part chromosome crossover (TCX) for solving the multiple travelling salesmen problem (MTSP) using a genetic algorithm (GA) for near-optimal solutions. We adopt the two-part chromosome representation technique which has been proven to minimise the size of the problem search space. Nevertheless, the existing crossover method for the two-part chromosome representation has two limitations. Firstly, it has extremely limited diversity in the second part of the chromosome, which greatly restricts the search ability of the GA. Secondly, the existing crossover approach tends to break useful building blocks in the first part of the chromosome, which reduces the GA’s effectiveness and solution quality. Therefore, in order to improve the GA search performance with the two-part chromosome representation, we propose TCX to overcome these two limitations and improve solution quality. Moreover, we evaluate and compare the proposed TCX with three different crossover methods for two MTSP objective functions, namely, minimising total travel distance and minimising longest tour. The experimental results show that TCX can improve the solution quality of the GA compared to three existing crossover approaches. 相似文献
15.
This paper surveys algorithms for the well-known problem of finding the minimum cost assignment of jobs to agents so that each job is assigned exactly once and agents are not overloaded. All approaches seem to be based on branch-and-bound with bound supplied through heuristics and through relaxations of the primal problem formulation. From the survey one can select building blocks for the design of one's own tailor-made algorithm. The survey also reveals that although just about every mathematical programming technique was tried on this problem, there is still a lack of a representative set of test problems on which competing enumeration algorithms can be compared, as well as a shortage of effective heuristics. 相似文献
16.
A multi-objective lead time control problem in multi-stage assembly systems using genetic algorithms
Cahit Perkgoz Amir Azaron Hideki Katagiri Kosuke Kato Masatoshi Sakawa 《European Journal of Operational Research》2007
In this paper, we develop a multi-objective model to optimally control the lead time of a multi-stage assembly system, using genetic algorithms. The multi-stage assembly system is modelled as an open queueing network. It is assumed that the product order arrives according to a Poisson process. In each service station, there is either one or infinite number of servers (machines) with exponentially distributed processing time, in which the service rate (capacity) is controllable. The optimal service control is decided at the beginning of the time horizon. The transport times between the service stations are independent random variables with generalized Erlang distributions. The problem is formulated as a multi-objective optimal control problem that involves four conflicting objective functions. The objective functions are the total operating costs of the system per period (to be minimized), the average lead time (min), the variance of the lead time (min) and the probability that the manufacturing lead time does not exceed a certain threshold (max). Finally, we apply a genetic algorithm with double strings using continuous relaxation based on reference solution updating (GADSCRRSU) to solve this multi-objective problem, using goal attainment formulation. The results are also compared against the results of a discrete-time approximation technique to show the efficiency of the proposed genetic algorithm approach. 相似文献
17.
On genetic algorithms for the packing of polygons 总被引:2,自引:0,他引:2
A genetic algorithm for placing polygons on a rectangular board is proposed. The algorithm is improved by combination with deterministic methods. 相似文献
18.
Genetic algorithms are adaptive sampling strategies based on information processing models from population genetics. Because they are able to sample a population broadly, they have the potential to out-perform existing heuristics for certain difficult classes of location problems. This paper describes reproductive plans in the context of adaptive optimization methods, and details the three genetic operators which are the core of the reproductive design. An algorithm is presented to illustrate applications to discrete-space location problems, particularly thep-median. The algorithm is unlikely to compete in terms of efficiency with existingp-median heuristics. However, it is highly general and can be fine-tuned to maximize computational efficiency for any specific problem class. 相似文献
19.
In this article, we propose a new scatter-search-based learning algorithm to train feed-forward neural networks. The algorithm also incorporates elements of tabu search. We describe the elements of the new approach and test the new learning algorithm on a series of classification problems. The test results demonstrate that the algorithm is significantly superior to several implementations of back-propagation. 相似文献
20.
In this paper a new heuristic hybrid technique for bound-constrained global optimization is proposed. We developed iterative algorithm called GLPτS that uses genetic algorithms, LPτ low-discrepancy sequences of points and heuristic rules to find regions of attraction when searching a global minimum of an objective function. Subsequently Nelder–Mead Simplex local search technique is used to refine the solution. The combination of the three techniques (Genetic algorithms, LPτO Low-discrepancy search and Simplex search) provides a powerful hybrid heuristic optimization method which is tested on a number of benchmark multimodal functions with 10–150 dimensions, and the method properties – applicability, convergence, consistency and stability are discussed in detail. 相似文献