首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Charge exchange mass spectra obtained on a double quadrupole (QQ) mass spectrometer are compared with those obtained by other methods. The effects of reagent ion recombination energies and of axial ion translational energy on these spectra are followed.  相似文献   

3.
A theromospray ion source using corona discharge ionization was interfaced to a quadrupole ion trap mass spectrometer via a multi-element lens system. Ions were injected into the trap periodically where they were stabilized by collisions with helium bath gas. Mass spectra were recorded on the trapped ions using the mass-selective instability scan mode. Data are shown for a peptide and a nucleoside and the effects of some experimental variables on the spectra are explored.  相似文献   

4.
By using a modified ion trap mass spectrometer, resolution in excess of 30,000 (FWHM) at m I z 502 is demonstrated. The method of increasing resolution in the ion trap mass spectrometer operated in the mass-selective instability mode depends on decreasing the rate of scanning the primary radio frequency amplitude as well as using resonance ejection at the appropriate frequency and amplitude. A theoretical basis for the method is introduced.  相似文献   

5.
A double quadrupole mass spectrometer is used to obtain mass spectra which represent only those species in a complex mixture which undergo fragmentation with loss of a constant neutral moiety. Examples are given where these spectra for Brxxx loss and NO2xxx loss allow recognition of bromo compounds and the nitro functional group in complex mixtures. The method is easier to implement than the corresponding scans on asector instrument.  相似文献   

6.
The goal of proteomics research is to be able to identify and quantify the vast numbers of proteins within an organism or tissue. "Top-down" methods address this goal without the need for proteolytic digestion prior to mass analysis. We report here an approach for top-down protein identification that has been implemented on a commercially available, unmodified Qq-TOF mass spectrometer. Intact protein molecular ions first undergo cone fragmentation in the electrospray inlet. Conventional MS/MS is then performed on a mass selected cone fragment using CID in the Qq interface of the Qq-TOF mass spectrometer to generate a sequence tag through a pseudo-MS3 experiment. Seven proteins varying in molecular weight between 11 and 66 kDa were chosen to demonstrate applicability of method. After the molecular weight of the intact protein was determined, the cone voltage was varied to induce fragmentation. Cone fragment ions were then further dissociated using conventional CID, and the resulting MS/MS spectra were processed and analyzed for sequence tags. Sequence tags were easily identified from a MS/MS spectrum of a cone induced fragment ion both manually and through a de novo sequencing program included in the software associated with the mass spectrometer. Sequence tags were subjected to database searching using the PeptideSearch program of EMBL, and all protein sequence tags gave unambiguous search results. In all cases, sequence tags were found to originate from the n- and/or c-termini of the proteins.  相似文献   

7.
8.
Emary WB  Isern-Flecha I  Wood KV  Ridley TY  Cooks RG 《Talanta》1986,33(12):1001-1007
The coupling of a caesium ion source to a triple quadrupole mass spectrometer is described. The potential of this combination for examining thermally labile, non-volatile molecules, such as thiamine hydrochloride, is examined. Emphasis is placed on the advantages the various scanning modes of tandem mass spectrometry provide in ion structure elucidation and the investigation of desorption ionization mechanisms. Use of the caesium ion source for desorption of neutral molecules which are chemically ionized by an auxiliary gas is demonstrated. This procedure may be especially useful for examining non-volatile, non-ionic samples.  相似文献   

9.
The ionization efficiency of an electron cyclotron resonance ion source (ECRIS) is generally high, and all elements can be fundamentally ionized by the high-temperature plasma. We focused our attention on the high potentiality of ECRIS as an ion source for mass spectrometers and attempted to customize the mass spectrometer equipped with an ECRIS. Precise measurements were performed by using an ECRIS that was specialized and customized for elemental analysis. By using the charge-state distribution and the isotope ratio, the problem of overlap such as that observed in the spectra of isobars could be solved without any significant improvement in the mass resolution. When the isotope anomaly (or serious mass discrimination effect) was not observed in ECR plasma, the system was found to be very effective for isotope analysis. In this paper, based on the spectrum (ion current as a function of an analyzing magnet current) results of low charged state distributions (2+, 3+, 4+, ...) of noble gases, we discuss the feasibility of an elemental analysis system employing an ECRIS, particularly for isotopic analysis. The high-performance isotopic analysis obtained for ECRIS mass spectrometer in this study suggests that it can be widely applied to several fields of scientific study that require elemental or isotopic analyses with high sensitivity.  相似文献   

10.
Charge exchange reactions within a triple quadrupole mass spectrometer characterize doubly charged ions formed in the ion source. Two methods have been developed for identifying the singly charged ions formed from doubly charged ions by charge exchange in the collision quadrupole. The first is based on the characteristically high kinetic energy-to-charge ratios of the products of charge exchange; this property can be used to separate these ions from all other singly charged ions. This retarding potential method is analogous to procedures for recording doubly charged ion mass spectra using sector instruments. The second method is based on the fact that, although mass remains constant in the charge exchange reaction, the change in mass-to-charge ratio can be followed. A charge exchange linked scan, predicated on changes in charge rather than mass, but otherwise analogous to neutral loss/gain scans, is described. Information on the structure of doubly charged ions can be obtained by recording the fragmentation products of dissociative charge exchange. The utility of the charge exchange linked scan for the selective identification of polynuclear aromatic compounds in a complex mixture is described. The methods given can be generalized to cover other charge permutation reactions.  相似文献   

11.
12.
A novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. Ni x (NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2-4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of approximately 10(-6). In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 x 10(-8) of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression.  相似文献   

13.
We report for the first time a coupling of gas-phase ion-molecule reactions with chromatographic separations on a quadrupole ion trap mass spectrometer. The interface was accomplished by using a pulsed valve for the introduction of a volatile neutral into the ion trap. The pulsed valve controller is synchronized with the mass spectrometer software. The setup requires some minor modifications to the vacuum system of the commercial quadrupole ion trap but most of the modifications are external to the mass spectrometer. Two applications of this interface are described: differentiation between two phosphoglucose positional isomers and detection of a phosphopeptide in a peptide mixture. Both applications are using the reactivity of trimethoxyborate towards a phosphate moiety in the negative ion mode. The detection of phosphopeptides hinges on our findings that non-phosphorylated peptide anions do not react with trimethoxyborate. This LC/MS detection can be easily visualized in terms of selected reaction monitoring.  相似文献   

14.
Li HF  Liu J  Cai Z  Lin JM 《Electrophoresis》2008,29(9):1889-1894
The present study reports a simple method of coupling a glass microchip to an electrospray ionization (ESI) quadrupole time-of-flight mass spectrometer (QTOF-MS) for separation and identification of peptides. A sheath-flow electrospray interface was constructed based on attaching a short fused-silica capillary to the microchip. The dead volume at the interface was effectively reduced by wet etching an approximate flat-bottom capillary insertion channel coaxial to the end of separation microchannel and using a wire-controlled epoxy-blocking attachment method. The makeup liquid and neb gas were coaxially pumped through two stainless-steel tees to maintain a stable and efficient electrospray. The coupled microchip/ESI-QTOF-MS system was successfully used to carry out electrophoresis separation of peptides and ESI-QTOF-MS identification.  相似文献   

15.
A heated capillary tube combined with a radio-frequency-only quadrupole has been coupled with a home- made, high-resolution orthogonal-injection, time-of-flight mass spectrometer to improve ion transmission from the atmospheric pressure to the low--pressure regions. With an electrospray ion source, the performance of the interface on the intensity of spectra was investigated. For electrospray ionization, the ion intensity detected on the time-of- flight mass spectrometer was seen to increase three-fold compared with an orifice interface. It has been shown that the enhanced ion inlet designs can not only increase the ion translation efficiency, but also improve the detection limits of the mass spectrometer. Coupling atmospheric pressure matrix-assisted laser desorption/ionization with the improved interface resulted in an instrument detection limit as low as 2.5 fmol.  相似文献   

16.
A method is reported by which surface-induced dissociation is used to activate ions stored in a quadrupole ion trap mass spectrometer. The method employs a short (< 5 μs), fast-rising (< 20-ns rise time), high voltage direct current (dc) pulse, which is applied to the endcaps of a standard Paul-type quadrupole ion trap. This is in contrast to the application of an alternating current (ac) signal normally used to resonantly excite and dissociate ions in the trap. The effect of the dc pulse is to cause the ions rapidly to become unstable in the radial direction and subsequently to collide with the ring electrode. Sufficient internal energy is acquired in this collision to cause high energy fragmentations of relatively intractable molecular ions such as pyrene and benzene. The dissociations of limonene are used to demonstrate that high energy demand processes increase in relative importance in the dc pulse experiment compared with the usual resonance excitation method used to cause activation. The fragments are scanned out of the ion trap using the conventional mass-selective instability scan mode. Simulations of ion motion in the trap provide evidence that surface collisions occur at kinetic energies in the range of tens to several hundred electronvolts. The experiments also demonstrate that production of fragment ions is sensitive to the phase of the main radiofrequency drive voltage at the point when the dc is initiated.  相似文献   

17.
A series of symmetrical phthalate, isophthalate, and terephthalate ester molecular anions were reacted with oxygen in the collision cell of a triple quadrupole mass spectrometer to produce characteristic [M − R] fragments that can be used to identify these compounds. The [M − R]/M−· intensity ratios decreased for homologous esters in the following order: phthalates > isophthalates terephthalates. Based on the [M − R] ion intensities for different alkyl substituents, on 18O2 labeling experiments, and on the reactivity of bis(t-butylcyclohexyl)phthalates, it was concluded that M − R anions are generated through an SN2 nucleophilic displacement at the alpha carbon of the saturated alkyl substituent. For the phenyl ester, the reaction proceeds through attack at the carbonyl carbon.  相似文献   

18.
A particle beam interface has been coupled to a quadrupole ion trap mass spectrometer. The system allows the collection of electron ionization mass spectra from analyte in solution. The interface incorporates a pneumatic nebulizer, a heated desolvation chamber, and a three-stage separator region. Additional helium, for improved performance, is added through stage 3. The particles formed in the interface are separated from solvent molecules and are transferred directly to the ion trap where they are expected to collide with the hot hyperbolic surface of the end cap. The end cap serves both as a heated target used to vaporize the particles and as an ion-trapping electrode. Mass analysis is achieved with the mass-selective instability scan supplemented with resonance ejection. Electron ionization spectra from 100 ng of caffeine [molecular weight (MW) = 1941; 1-naphthalenol methylcarbamate (carbaryl) (MW = 2011, 17α-hydroxyprogesterone (MW = 330), and reserpine (MW = 608) are shown using sampling by a segmented flow analysis. Some charge exchange is evident with methanol as well as self-chemical ionization at higher analyte levels. The interface shows a nonlinear caffeine calibration curve for analyte amounts below 30 ng and a more linear response at higher amounts. Caffeine was detected at 25 pmol (5 ng), with a signal-to-noise ratio of 50, 20-μL loop, full scan.  相似文献   

19.
A pulsed valve positioned just outside the ion trap electrodes (within the vacuum chamber) has been characterized. The observed gas pulse widths and the maximum ion intensities were found to decrease as the distance between the pulsed valve and the ion trap electrodes increased. An explanation is presented within. The pulsed valve was found to impart temporal separation in ion-molecule reactions by permitting the removal of interfering neutrals. Other factors that affect the degree of temporal separation also are presented.  相似文献   

20.
A novel method for separating ions according to their charge state using a quadrupole time-of-flight mass spectrometer is presented. The benefits of charge state separation are particularly apparent in protein identification applications at low femtomole concentration levels, where in conventional TOF MS spectra peptide ions are often lost in a sea of chemical noise. When doubly and triply charged tryptic peptide ions need to be filtered from singly charged background ions, the latter are suppressed by two to three orders of magnitude, while from 10-50% of multiply charged ions remain. The suppression of chemical noise reduces the need for chromatography and can make this experimental approach the electrospray equivalent of conventional MALDI peptide maps. If unambiguous identification cannot be achieved, MS/MS experiments are performed on the precursor ions identified through charge separation, while the previously described Q2-trapping duty cycle enhancement is tuned for approximately 1.4 of the precursor m/z to enhance intensities of ions with m/z values above that of the precursor. The resulting product ion spectra contain few fragments of impurities and provide quick and unambiguous identification through database search. The multiple charge separation technique requires minimal tuning and may become a useful tool for analysis of complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号