首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Nano-porous carbon (NPC) was synthesized by hydrothermal condensation of fructose and characterized by X-ray powder diffraction and also nitrogen adsorption analysis. It was then modified with amino groups and used as a sorbent for the removal of heavy metal ions. The formation of amino-modified NPC was confirmed by X-ray powder diffraction, infrared spectroscopy, thermogravimetric and elemental analysis. NPC was applied for removal of Pb(II), Cd(II), Ni(II) and Cu(II) ions. The effects of sample pH and the adsorption kinetics were studied, and the adsorption capacity was determined. The sorbent was applied to the removal of heavy metal ions in industrial waste water samples.
Figure
A schematic diagram for sorbent synthesis  相似文献   

2.
A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(II) on multiwalled carbon nanotubes modified with 2-aminobenzothiazole. Inductively coupled plasma optical emission spectrometry was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined using batch and column procedures. An enrichment factor of 100 was accomplished. Common other ions do not interfere in both the separation and determination. The maximum adsorption capacity of the sorbent at optimum conditions is 60.3?mg?g?1 of Pb(II), the detection limit (3??) is 0.27?ng?mL?1, and the relative standard deviation is 1.6% (n?=?8). The method was validated using a certified reference material, and has been applied to the determination of trace Pb(II) in water samples with satisfactory results.
Figure
2-Aminobenzothiazole modified multiwalled carbon nanotubes has been developed to separate and concentrate trace Pb(II) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in batch and column modes, and the new sorbent (MWCNTs-ABTZ) presents high selectivity and adsorption capacity for the solid phase extraction of trace Pb(II).  相似文献   

3.
We have covalently grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The resulting material was characterized by FT-IR and UV–vis spectroscopy, by TGA, XPS and SEM. It is shown to be a valuable solid-phase extraction adsorbent for the preconcentration of trace quantities of Fe(III), Cu(II) and Pb(II) ion from aqueous solution prior to their determination by ICP-OES. Various factors affectting the separation and preconcentration were investigated. The enrichment factor typically is 100. Under optimized experimental conditions, the maximum adsorption capacities for Fe(III), Cu(II) and Pb (II) are 64.5, 30.5 and 17.0?mg?g-1, respectively, the detection limits are 0.26, 0.15 and 0.18?ng?mL-1, and the relative standard deviations are <2.5% (n?=?6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Fe(III), Cu(II) and Pb (II) in water samples.
Figure
Multiwalled carbon nanotubes grafted with phenyl-iminodiacetic acid (PIDA-MWCNTs) is prepared and employed as solid phase extraction sorbent to determinate the trace Fe(III), Cu(II) and Pb (II) in water samples. The method has been applied to the preconcentration of trace amount of Fe(III), Cu(II) and Pb (II) in water samples with satisfactory results.  相似文献   

4.
Multiwalled carbon nanotubes were grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) and employed for solid phase extraction and preconcentration of trace lead ions prior to its determination by inductively coupled plasma optical emission spectrometry. The material was characterized by FT-IR and Raman spectroscopy, thermosgravimetric and elemental analysis. The effects of pH value, shaking time, sample volume, elution conditions and potentially interfering ions were investigated. Under the optimum conditions, the maximum adsorption capacity is 38?mg?g?1 of Pb(II), the detection limit is 0.32?ng?mL?1, the enrichment factor is 60, and the relative standard deviation is 3.5% (n?=?6). The method has been applied to the preconcentration of trace amounts of Pb(II) in environmental water samples with satisfactory results.
Figure
Oxidized multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) is prepared and employed as solid phase extraction sorbent to determinate the trace Pb(II) in water samples. The method has been applied to the preconcentration of trace amount of Pb(II) in water samples with satisfactory results.  相似文献   

5.
A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350???g?L-1 of Pb(II), and between 2.4 and 520???g?L-1 of Cr(III) for an 800-mL sample. The detection limit (3?s, N?=?10) for Pb(II) and Cr(III) ions is 0.43 and 0.55???g?L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples.
Figure
Recovery percentage of Pb(II) and Cr(III) ions at different solution volumes.  相似文献   

6.
Graphene nanosheets were modified with amino groups and the resulting material was used as a sorbent for the extraction of cadmium and lead ions. The nanosheets were characterized by IR spectroscopy, transmission electron microscopy, thermal gravimetric analysis and elemental analysis. The effects of sample pH, eluent parameters (type, concentration and volume of eluent), flow rates (of both sample and eluent), and of a variety of other ions on the efficiency of the extraction of Cd(II) and Pb(II) were optimized. Following solid phase extraction, the elements were determined by FAAS. The limits of detection are <0.9 μg L?1 for Pb(II) and <5 ng L?1 for Cd(II). The relative standard deviations are <2.2 %. The method was validated by analyzing several certified reference materials and was then used for Pb(II) and Cd(II) determination in natural waters and vegetables.
Figure
In this work, grapheme oxide nanosheets were modified with amino and tri-amino groups and their application were investigated in Cd(II) and Pb(II) determination in food sample. The results show high preconcentration factor and adsorption capacities for these nanosheets.  相似文献   

7.
We have prepared a novel surface molecular imprinted polymer (S-MIP) using dibenzothiophene (DBT) as the template molecule, 4-vinylpyridine as the functional monomer, and potassium hexatitanate whisker as the carrier. The S-MIP was characterized by Fourier transform infrared spectroscopy and and scanning electron microscopy. The kinetics and isotherms for the adsorption of DBT on the S-MIP followed pseudo-second-order and Freundlich models, respectively. Thermodynamic parameters were determined. The overall adsorption process was endothermic and spontaneous. Selectivity studies showed that the S-MIP selectively adsorbs DBT over its structural analogs and can be regenerated. Its adsorption capacity was still at 84.8% at the sixth cycle.
Figure
A novel surface molecular imprinted polymer was synthesized. The kinetics and isotherms for the adsorption of dibenzothiophene followed pseudo-second-order and Freundlich models, respectively. The adsorption process was endothermic and spontaneous. The adsorbent could selectively adsorb dibenzothiophene, and had the potentiality to be reused.  相似文献   

8.
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). In the first step, the cationic Pb(II) complex of 2,2-bipyridyl is formed which, in a second step, is adsorbed on ox-MWCNTs mainly due to electrostatic and van der Waals interactions. The Pb(II) ions were then eluted with dilute nitric acid and quantified by FAAS. The effects of pH value, mass of sorbent, concentration of 2,2-bipyridyl, stirring time, of type, concentration and volume of eluent, of eluent flow rate and sample volume were examined. Most other ions do not affect the recovery of Pb(II). The limits of detection are 240 and 60 ng L?1 for sample volumes of 100 and 400 mL, respectively. The recovery and relative standard deviation are >95 % and 2.4 %, respectively. Other figures of merit include a preconcentration factor of 160 and a maximum adsorption capacity of 165 mg g?1. The method was successfully applied to the determination of Pb(II) in spiked tap water samples. The accuracy of the method was verified by correctly analyzing a certified reference material (NCS ZC85006; lead in tomatoes).
Figure
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). Most other ions do not affect the recovery of Pb(II).  相似文献   

9.
A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g?1 and 0.273 L mg?1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL?1 of Hg(II), and the relative standard deviation is <7.2 % (for n?=?3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.
Figure
Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.  相似文献   

10.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

11.
We have developed a highly sensitive and selective sensor for lead(II) ions. A glassy carbon electrode was modified with Fe3O4 nanospheres and multi-walled carbon nanotubes, and this material was characterized by scanning electron microscopy and X-ray diffraction. The electrode displays good electrochemical activity toward Pb(II) and gives anodic and cathodic peaks with potentials at ?496 mV and ?638 mV (vs. Ag/AgCl) in pH?6.0 solution. The sensor exhibits a sensitive and fairly selective response to Pb(II) ion, with a linear range between 20 pM and 1.6 nM, and a detection limit as low as 6.0 pM (at a signal-to noise ratio of 3). The sensor was successfully applied to monitor Pb(II) in spiked water samples.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by modifying Fe3O4 nanospheres and multi-walled carbon nanotubes onto the pretreated glassy carbon electrode. The electrode displays good electrochemical activity toward Pb(II). And a low detection limit of 6.0 pM, high sensitivity, good reproducibility and stability provide the Fe3O4/MWCNTs/GCE a definite candidate for monitoring lead ion in real samples.  相似文献   

12.
We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL?1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL?1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g?1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of magnetic MOF-DHz nanocomposite.  相似文献   

13.
The current paper presents a novel Pb(II) ion-imprinted silica-supported organic–inorganic hybrid sorbent functionalized with Schiff base by coupling a surface imprinting technique with a sol–gel process for the selective removal of Pb(II) ions from aqueous solution. Fourier transmission infrared spectroscopy, scanning electron microscopy, N2 adsorption–desorption isotherms and thermogravimetric analysis were used to characterize the Pb(II)-imprinted hybrid sorbent. The adsorption equilibrium was finished with 30 min. The experiment value of maximum adsorption capacity was found to be 54.9 mg g?1. There were not significantly influence on the adsorption capacity of Pb(II) in the range of pH 3.5–6.5. The equilibrium data were fitted very well to the Langmuir isotherm model and pseudo-first-order kinetics model. Under competitive adsorption conditions, the Pb(II)-imprinted hybrid sorbent was 3.09, 4.73, 3.34 and 4.96 times more selective than the corresponding non-imprinted sorbent for the systems of Pb(II)/Cu(II), Pb(II)/Cd(II), Pb(II)/Ni(II) and Pb(II)/Zn(II), respectively. The thermodynamic results demonstrated that the adsorption of Pb(II) onto the Pb(II)-imprinted hybrid sorbent took place by a spontaneous and endothermic process with further increase in the degree of freedom at the solid–solution interface.  相似文献   

14.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

15.
Spherical Fe3O4 nanoparticles (NPs) were prepared by hydrothermal synthesis and characterized by scanning electron microscopy and X-ray diffraction. A glassy carbon electrode was modified with such NPs to result in a sensor for Pb(II) that is based on the strong inducing adsorption ability of iodide. The electrode gives a pair of well-defined redox peaks for Pb(II) in pH 5.0 buffer containing 10 mM concentrations of potassium iodide, with anodic and cathodic peak potentials at ?487 mV and ?622 mV (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.10 to 44 nM, and the detection limit is 40 pM at an SNR of 3. The sensor exhibits high selectivity and reproducibility.
Figure
An electrochemical sensor for Pb2+ was fabricated based on the glassy carbon electrode modified with Fe3O4 NPs and the strong inducing adsorption ability of I?. The sensor had excellent stability, high sensitivity, ease of construction and utilization for Pb(II) determination  相似文献   

16.
We have developed a gold ion-imprinted polymer (GIP) by incorporating a dipyridyl ligand into an ethylene glycol dimethacrylate matrix which then was coated onto porous silica particles. The material was used for the selective extraction of ultratrace quantities of gold ion from mine stones, this followed by its quantitation by FAAS. The effects of concentration and volume of eluent, pH of the solution, flow rates of sample and eluent, and effect of potentially interfering ions, especially palladium and platinum, was investigated. The limit of detection is <0.2 ng?mL?1, the precision (RSD%) is 1.03 %, and recoveries are >99 %. In order to show the high selectivity and efficiency of the new sorbent, the results were compared to those obtained with more simple sorbents possessing the same functional groups. The accuracy of the method was demonstrated by the accurate determination of gold ions in a certified reference material. To the best of our knowledge, there is no report so far on an imprint for gold ions that has such a selectivity over Pd(II) and Pt(II) ions.
Figure
Coating of gold ion imprinted polymer on nanoporous silica  相似文献   

17.
We report on the synthesis of Fe3O4-functionalized metal-organic framework (m-MOF) composite from Zn(II) and 2-aminoterephthalic acid by a hydrothermal reaction. The magnetic composite is iso-reticular and was characterized by FTIR, X-ray diffraction, SEM, magnetization, and TGA. The m-MOF was then applied as a sorbent for the solid-phase extraction of trace levels of copper ions with subsequent quantification by electrothermal AAS. The amount of sorbent applied, the pH of the sample solution, extraction time, eluent concentration and volume, and desorption time were optimized. Under the optimum conditions, the enrichment factor is 50, and the sorption capacity of the material is 2.4 mg g?1. The calibration plot is linear over the 0.1 to 10 μg L?1 Cu(II) concentration range, the relative standard deviation is 0.4 % at a level of 0.1 μg L?1 (for n?=?10), and the detection limit is as low as 73 ng L?1. We consider this magnetic MOF composite to be a promising and highly efficient material for the preconcentration of metal ions.
Figure
Magnetic metal-organic frameworks was synthesized and used as a new sorbent for lead adsorption with detection by electrothermal atomic absorption spectrometry.  相似文献   

18.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   

19.
We have prepared a highly selective and efficient sorbent for the simultaneous separation and preconcentration of lead and cadmium ions from milk and water samples. An ionic liquid was deposited on the surface of magnetic nanoparticles (IL-MNPs) and used for solid phase extraction of these ions. The IL-MNPs carrying the target metals were then separated from the sample solution by applying an external magnetic field. Lead and cadmium were almost quantitatively retained by the IL-MNPs, and then eluted with nitric acid. The effect of different variables on solid phase extraction was investigated. The calibration curve is linear in the range from 0.3 to 20?ng mL?1 of Cd(II), and from 5 to 330?ng mL?1 of Pb(II) in the initial solution. Under optimum conditions, the detection limits are 1.61 and 0.122?μg?L-1 for Pb(II) and Cd(II) respectively. Relative standard deviations (n?=?10) were 2.87?% and 1.45?% for 0.05?μg?mL-1 and 0.2?μg?mL-1 of Cd (II) and Pb (II) respectively. The preconcentration factor is 200 for both of ions.
Figure
A novel, highly selective and efficient sorbent, was prepared and applied for separation and preconcentration of lead and cadmium from real samples. Lead and cadmium could be quantitatively retained by ionic liquid-modified magnetite nanoparticles and then easily separated from the aqueous solution by applying an external magnetic field; so, no filtration or centrifugation was necessary.  相似文献   

20.
We describe a molecularly imprinted polymer (MIP) for the solid-phase extraction of the skin protectant allantoin. The MIP was deposited on the surface of monodisperse silica microspheres possessing acroyl groups on the surface (MH-SiO2). The resulting MIP microspheres (MH-SiO2@MIP) showed a 3.4-fold higher adsorption capacity and a 1.9-fold better selectivity for allantoin than the respective non-imprinted polymer (MH-SiO2@NIP). The monolayer adsorption capacities of the MH-SiO2@MIP and the MH-SiO2@NIP were calculated with the help of the Langmuir model and found to be 6.8 and 1.9 mg?g?1, respectively. Adsorption kinetics fit a pseudo-second order rate mechanism, with an initial adsorption rate of 1.44 for the MH-SiO2@MIP, and of 0.07 mg?g?1?min?1 for the MH-SiO2@NIP. The material can be regenerated, and its adsorption capacity for allantoin remains stable for at least five regeneration cycles. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.
Figure
A molecularly imprinted polymer for the selective separation of allantoin was developed. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号