首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
分散液液微萃取-气相色谱法测定水样中甲基环硅氧烷   总被引:1,自引:0,他引:1  
将分散液液微萃取与气相色谱法技术相结合,建立了测定水样中3种甲基环硅氧烷残留的方法.重点探讨了萃取剂的种类和用量、分散剂的种类和用量、萃取时间及盐浓度等对样品萃取效率的影响.结果表明在优化条件下,待测物在5~100μg/L范围内线性良好(r>0.99),检出限在2~4μg/L之间,富集倍数可达165~170倍,相对标准...  相似文献   

3.
李贤波  赵嫚  李胜清  陈浩  沈菁 《色谱》2012,30(9):926-930
建立了快速(quick)、简单(easy)、便宜(cheap)、有效(effective)、可靠(rugged)和安全(safe)(QuEChERS)的分散液-液微萃取(DLLME)-气相色谱快速测定番茄中拟除虫菊酯类农药残留的方法。样品经乙腈提取,N-丙基乙二胺(PSA)净化,采用DLLME富集,用气相色谱法分析。考察了联苯菊酯、甲氰菊酯和氟氰菊酯在番茄中的残留测定,同时考察了萃取剂种类与体积、分散剂体积以及萃取时间等因素对萃取效率的影响,以40 μL氯仿为萃取剂,1000 μL乙腈为分散剂,萃取时间为60 s。结果表明: 3种拟除虫菊酯类农药在番茄中的检出限分别为0.5、0.5、0.3 μg/kg。在1、10和50 μg/kg添加水平下,联苯菊酯、甲氰菊酯和氟氰菊酯在番茄中的平均回收率分别为89%~109%、92.5%~105%和90%~108%,相对标准偏差分别为2.5%~7.6%、2.8%~5.7%、3.8%~9.1%。该方法简便、快速、安全、价格低廉,重现性好,可用于番茄中拟除虫菊酯类农药的快速检测。  相似文献   

4.
In this work, a polypropylene frit with porous network structure (20 μm pole size) was first utilized as the mould of polymer monolithic material, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was synthesized within channels and macropores of the frit. A simple and sensitive solid-phase microextraction method based on polymer monolith frit coupled with high-performance liquid chromatography (HPLC) was established and applied to analysis of hexanal and heptanal in biological samples (human urine and serum). In the method, small molecule metabolites (aldehydes) in biological samples derivatized with 2,4-dinitrophenylhydrazine (DNPH), and the formed hydrazones were extracted simultaneously on the monolithic frit and thereafter ultrasound-assisted desorbed with acetonitrile as elution solvent. The experimental parameters with regard to polymerization, derivatization and extraction were investigated. Under the optimal conditions, the linearity was in the range of 0.02–5.0 μmol L−1 (r = 0.9994) for both hexanal and heptanal and the limits of detection (S/N = 3) were 0.81 nmol L−1 for hexanal and 0.76 nmol L−1 for heptanal. The relative standard deviations (RSDs, n = 5) were less than 6.5% for the same monolithic frit and less than 8.9% for the different monolithic frits. Satisfactory recoveries ranging from 70.71% to 88.73% were obtained for the urine samples. The method possesses many advantages including simple setup, fast analysis, low cost, sufficient sensitivity, good biological compatibility and less organic solvent consumption. The proposed method is a useful assistant tool in the clinical early diagnosis of lung disease by monitoring aldehyde biomarker candidates in complex biological samples.  相似文献   

5.
建立了分散液相微萃取.气相色谱,质谱快速分析水中硝基苯、对硝基苯、1,3一二硝基苯和2,4-二硝基氯苯的新方法.将含有18μL氯苯(萃取荆)的0.25 mL丙酮(分散剂)作为萃取体系,快速注入到5.0 mL水溶液中.在4000r/min下离心2.0 min后,得到(10.0±0.5)μL沉积相(氯苯),取底部沉积相1.0μL进行气相色谱,质谱分析.方法线性范围0.5~50μg/L(r2=0.9986~0.9994),检出限0.2~0.5μg/L,相对标准偏差4.2%~7.3%(n=5).将该方法用于环境水样的测定,加标回收率72.9%~89.6%.  相似文献   

6.
A rapid, high throughput and sensitive method was presented for automated determination of cationic surfactants in environmental water samples. The method was based on an automated analysis platform that was composed of on-line polymer monolith microextraction (PMME) and high performance liquid chromatography-mass spectrum (HPLC-MS) with an autosampler. A poly(methacrylic acid-co-ethylene dimethacrylate) (MAA-co-EDMA) monolith was selected as the sorbent for purification and enrichment of cationic surfactants in environmental water samples while a new mixed-mode chromatographic column packed with octyl and sulfonic acid co-bonded silica (OSS) was employed for separation and quantitative determination of cationic surfactants in water samples. By integrating sample preparation, chromatographic separation and MS detection into one automated platform, it makes the whole analysis procedure simple, accurate, and time and labor-saving. Several parameters affecting the extraction performance were investigated. Under the optimized conditions, the proposed method was applied to the analysis of seven cationic surfactants in environmental water samples. Good linearities were obtained for all cationic surfactants with R2 larger than 0.9895. The limits of detection were found to be in the range of 15-24 ng/L. The method recoveries of the cationic surfactants spiked in water samples were from 80.5% to 115.1%, with relative standard deviations less than 12.4%.  相似文献   

7.
A simple, sensitive, selective, and low-cost method is proposed for rapidly determining nitric oxide (NO) in some rat tissues. Polymer monolith microextraction (PMME) using a poly(methacrylic acid–ethylene glycol dimethacrylate) (MAA-EGDMA) monolithic column was combined with derivatization of NO using 1,3,5,7-tetramethyl-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacene (TMDABODIPY), and this was used to analyze the derivatives of NO by high-performance liquid chromatography (HPLC) with fluorescence detection at λ ex/λ em = 498/507 nm. The baseline separation of TMDABODIPY and its NO derivative is performed under simple conditions in which a C18 column is used and eluted with 50 mmol L−1 ethanolamine and methanol. The conditions for the extraction of NO derivatives were optimized. The limit of detection of NO was 2 × 10−12 mol L−1 (S/N = 3). The linearity range of the method was 9 × 10−11−4.5 × 10−8 mol L−1. The interday and intraday relative standard deviations were less than 5%. The proposed method was successfully applied to the determination of NO levels in some rat tissue samples including heart, kidney, and liver with recoveries varying from 87.1 to 95.2%.  相似文献   

8.
A novel solid-phase microextraction (SPME) method based on molecularly imprinted polymer (MIP) monolith as the sorbent for the selective extraction of thiamphenicol (TAP) in milk and honey was developed. The newly developed MIP monolith was produced using TAP as the template molecule, 4-vinylpyridine (4-VP) as the functional monomer. The TAP-MIP monolith synthesized in a micropipette tip could be connected with syringes in different sizes simply to perform SPME process without any other treatment. The derivated MIP monolith showed high selectivity and enrichment ability for TAP. A simple, rapid and sensitive method for the determination of TAP in milk and honey using polymer monolith microextraction (PMME) based on the MIP monolith combined with high-performance liquid chromatography-photodiodes array detector was developed. Several parameters affecting MIP monolith microextraction were investigated, including the flow rate, volume, pH and salt concentration of sample, the type and volume of washing solution, the type and flow rate of eluent. The recovery of this method for TAP was investigated and high recoveries of 92.9-99.3% from milk and honey were obtained with relative standard deviations less than 4.9%.  相似文献   

9.
A simple solid-phase microextraction (SPME) device, coupled with gas chromatography-flame ionization detection (GC-FID), was developed to detect trace levels of phthalates in environmental water samples. Polyaniline (PANI) was chosen as the sorbent for the SPME device and was electrochemically deposited on a stainless steel wire to achieve high thermal and mechanical stability. The porous structure of the PANI film, characterized by scanning electron microscopy (SEM), suggested large extraction capability. Key parameters were optimized and five phthalates were selected to evaluate the SPME-GC procedures. The method was also applied to the analysis of lake and river water samples. Control experiments were carried out using commercial polyacrylate (PA) fiber. The new PANI-SPME-GC method offers high accuracy, precision and sensitivity and low detection limits. Thus, the method developed could be used as a new way to monitor the trace levels of phthalates in water medium. A possible extraction mechanism was investigated using electrochemical impedance spectroscopy (EIS).  相似文献   

10.
11.
A rapid and simple method of using solid-phase microextraction was developed for determination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in water samples. In this method, the target analyte is extracted from the sample into the polymeric coating of the fused-silica fiber. After exposure, the fiber is thermally desorbed in the heated injection port of the gas chromatograph, and a chromatographic analysis is performed by using low-resolution tandem mass spectrometry. Parameters that may affect the extension of the microextraction process, such as sampling mode, sample volume, temperature, agitation, and sampling time, were studied. Extraction efficiencies for 3 coating fibers were investigated: 100 microm poly(dimethylsiloxane) (PDMS), 65 microm PDMS-divinylbenzene, and 75 microm carboxen-PDMS. Linearity was evaluated (R = 0.999) for a 250-fold concentration range from the fg/mL to the pg/mL level. The 2,3,7,8-TCDD was detected at the fg/mL level when the headspace over the water sample was sampled for 60 min; the limit of detection obtained was better than that of Method 8280B of the U.S. Environmental Protection Agency. The proposed method performed well when applied to the analysis of tap water, lake water, and seawater samples.  相似文献   

12.
Zhu B  Chen H  Li S 《色谱》2012,30(2):201-206
以密度小于水的轻质溶剂为萃取剂,建立了无需离心步骤的溶剂去乳化分散液-液微萃取-气相色谱(SD-DLLME-GC)测定水样中多环芳烃的新方法。传统分散液-液微萃取技术一般采用密度大于水的有机溶剂为萃取剂,并需要通过离心步骤促进分相。而本方法以密度比水小的轻质溶剂甲苯为萃取剂,将其与丙酮(分散剂)混合并快速注入水样,获得雾化体系;然后注入乙腈作为去乳化剂,破坏该雾化体系,无需离心,溶液立即澄清、分相;取上层有机相(甲苯)进行GC分析。考察了萃取剂、分散剂、去乳化剂的种类及其体积等因素对萃取率的影响。以40 μL甲苯为萃取剂,500 μL丙酮为分散剂,800 μL乙腈为去乳化剂,方法在20~500 μg/L范围内呈现出良好的线性(r2=0.9942~0.9999),多环芳烃的检出限(S/N=3)为0.52~5.11 μg/L。用所建立的方法平行测定5份质量浓度为40 μg/L的多环芳烃标准水样,其含量的相对标准偏差为2.2%~13.6%。本法已成功用于实际水样中多环芳烃的分析,并测得其加标回收率为80.2%~115.1%。  相似文献   

13.
In this study, a polymer monolith microextraction (PMME) using a poly (methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith in conjunction with high-performance liquid chromatography (HPLC) was developed for the determination of 2,4-dinitrophenylhydrazine (DNPH) derivatives of several aldehydes in human saliva. The conditions for the labeling reactions of aldehydes with DNPH and followed extraction of the derivatives were optimized. The precision, recovery and detection limits were evaluated with spiked saliva. The limits of detection ranged from 0.43 to 1.40 μg/L. The inter-and intra-day relative standard deviations were less than 10%. The proposed method was successfully applied to the determination of aldehydes in saliva samples from a non-smoker, a passive smoker and a heavy smoker.  相似文献   

14.
In this study, a simple, rapid, low cost, sensitive and environmentally friendly technique, supramolecular solvent microextraction (SM-SME) followed by high performance liquid chromatography-ultraviolet has been proposed to extract carbaryl from water samples. Parameters, affecting the SM-SME performance such as the weight of decanoic acid (DeA), volume of tetrahydrofuran (THF), pH and salt concentration, were studied and optimised. The effect of the pH on the extraction efficiency was evaluated by one–factor-at-a-time methodology, but the other variables were optimised by a face-centred cube central composite design methodology. Optimum extraction conditions were obtained: DeA: 70 mg; THF: 650 µL; salt concentration: 10% (w/v) NaCl and pH = 2–4), and the performance of the proposed method was evaluated. Under the optimum conditions, good linearity (1.0–500 µg L?1, r2 = 0.9994) was obtained. Limit of detection and limit of quantification were 0.3–1.0 µg L?1, respectively. Also, the recoveries of the carbaryl were obtained in the ranged from 96% to 105%. Finally, proposed method was successfully applied for the determination of the carbaryl in the water samples of farms run-off and rivers and satisfactory results were obtained.  相似文献   

15.
A liquid‐phase microextraction method that uses a hollow‐fiber solvent bar microextraction technique was developed by combining gas chromatography with electron capture detection for the analysis of four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, and bromoform) in drinking water. In the microextraction process, 1‐octanol was used as the solvent. The technique operates in a two‐phase mode with a 5 min extraction time, a 700 rpm stirring speed, a 30°C extraction temperature, and NaCl concentration of 20%. After microextraction, one edge of the membrane was cut, and 1 μL of solvent was collected from the membrane using a 10 μL syringe. The solvent sample was directly injected into the gas chromatograph. The analytical characteristics of the developed method were as follows: detection limits, 0.017–0.037 ng mL−1; linear working range, 10–900 ng mL−1; recovery, 74 ± 9–91 ± 2; relative standard deviation, 5.7–10.3; and enrichment factor, 330–455. A simple, fast, economic, selective, and efficient method with big possibilities for automation was developed with a potential use to apply with other matrices and analytes.  相似文献   

16.
A sensitive procedure for the determination of five ultraviolet (UV) absorbers, belonging to the benzotriazole class, in environmental water samples is proposed. Analytes were first extracted and concentrated from the matrix and then selectively determined by gas chromatography in combination with tandem mass spectrometry detection. The high lipophilic character of some of the investigated species resulted in a strong trend to remain sorbed on solid surfaces, even after addition of considerable percentages of methanol (up to 30%) to water. Thus, minimizing sample handling during the enrichment step is mandatory in order to obtain acceptable accuracy and precision. Solid-phase microextraction (SPME), as sample preparation approach, fulfilled the above requirement and provided acceptable figures of merit for the determination of target species in environmental water samples, including raw wastewater. Optimization of SPME conditions showed that the combination of headspace extraction, with a sample temperature of 100 °C and addition of 15 mg of NaCl per milliliter of sample rendered the best compromise in terms of extraction efficiency for all species. Considering a sampling time of 30 min with a poly(dimethylsiloxane)–divinylbenzene-coated SPME fiber, limits of quantification below 2 ng l−1 and relative standard deviations between 5% and 12% were achieved. Three of the five species included in this research were determined in raw wastewater with a maximum concentration of 57 ng l−1 for the Tinuvin 326 UV absorber.  相似文献   

17.
A simple procedure for epychlorohydrin determination in water is presented. In order to optimize the epichlorohydrin extraction conditions in water using headspace (HS)-solid-phase microextraction (SPME), followed by gas chromatography, an experimental design in two steps is performed. Firstly, a 2(5-2) fractional factorial design for screening the significant variables is used. Secondly, a central composite design for optimizing them is carried out. The best experimental conditions are the followings: poly(dimethysiloxane)-divinylbenzene coating fiber; 20 min extraction time; 5 degrees C extraction temperature; 300 g/L sodium chloride; and 20 mL HS volume in a 40-mL vial. Using the previous extraction conditions with gas chromatography (GC)-flame ionization detection equipment, a limit of detection (LOD) of 1.8 microg/L and a relative standard deviation (RSD) of 3.8% (for 25 microg/L) are obtained. With a GC electron capture detection equipment the RSD is 6.6% (for 5 microg/L), and the LOD found is lower (0.08 microg/L). The method is applied to the analysis of water from four treatment plants at the entrance and effluent stream. The standard addition method is used to quantitate the epichlorohydrin that is found in the raw water of the three wastewater treatment plants.  相似文献   

18.
Headspace solvent microextraction (HSME) was shown to be an efficient preconcentration method for extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A microdrop of 1-butanol (as extracting solvent) containing biphenyl (as internal standard) was used in this investigation. Extraction occurred by suspending a 3 μl drop of 1-butanol from the tip of a microsyringe fixed above the surface of solution in a sealed vial. After extraction for a preset time, the microdrop was retracted back into the syringe and injected directly into a GC injection port. The effects of nature of extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extraction time on HSME efficiency were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with PAHs. The optimized procedure was successfully applied to the extraction and determination of PAHs in different water samples.  相似文献   

19.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

20.
Wang JX  Jiang DQ  Yan XP 《Talanta》2006,68(3):945-950
A method for determination of toluene, ethylbenzene, p-xylene, o-xylene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene in water samples was developed by a fiber-in-tube liquid phase microextraction technique (fiber-in-tube LPME) coupled with GC-flame ionization detector (FID). The method used a tube packed with polytetrafluoroethylene (PTFE) fibers as an extraction medium, improving the stableness of the solvent and the performance of extraction. Certain amounts of curled PTFE fibers were packed into a section of PTFE tube. Because the fibers were curled, they formed network structure in the tube. The fiber packed tube was firstly immersed into organic solvent to be filled with organic solvent and then was exposing to an aqueous solution to extract the target compounds. The extract was then retracted by a conventional GC microsyringe and analyzed by GC-FID. Extraction of the analytes in 8 ml aqueous solution for 15 min yielded enrichment factors of 224-361. The precision (R.S.D., n = 5) was 3.6-8.1% for peak area. The limit of detection (LOD, S/N = 3) for the six substituted benzenes were in the range of 0.3-5.0 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号