首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation and characterization of three new macrocyclic ligands with pendant arms based on the [2+2] condensation of isophthalaldehyde and the corresponding triamine substituted at the central N-atom is reported. None of these new macrocyclic ligands undergo any equilibrium reaction, based on imine hydrolysis to generate [1+1] macrocyclic formation or higher oligomeric compounds, such as [3+3], [4+4], etc., at least within the time scale of days. This indicates the stability of the newly generated imine bond. In sharp contrast, the reaction of the [2+2] macrocyclic Schiff bases with Cu(I) generates the corresponding dinuclear Cu(I) complexes [Cu(2)(L(1))](2+), 1(2+); [Cu(2)(L(2))(CH(3)CN)(2)](2+), 2(2+); and [Cu(2)(L(3))(CH(3)CN)(2)](2+), 3(2+), together with their trinuclear Cu(I) homologues [Cu(3)(L(4))](3+), 4(3+); [Cu(3)(L(5))(CH(3)CN)(3)](3+), 5(3+); and [Cu(3)(L(6))(CH(3)CN)(3)](3+), 6(3+), where the [2+2] ligand has undergone an expansion to the corresponding [3+3] Schiff base that is denoted as L(4), L(5), or L(6). The conditions under which the dinuclear and trinuclear complexes are formed were analyzed in terms of solvent dependence and synthetic pathways. The new complexes are characterized in solution by NMR, UV-vis, and MS spectroscopy and in the solid state by X-ray diffraction analysis and IR spectroscopy. For the particular case of the L(2) ligand, MS spectroscopy is also used to monitor the metal assisted transformation where the dinuclear complex 2(2+) is transformed into the trinuclear complex 5(3+). The Cu(I) complexes described here, in general, react slowly (within the time scale of days) with molecular oxygen, except for the ones containing the phenolic ligands 2(2+) and 5(3+) that react a bit faster.  相似文献   

2.
The interaction of nitric oxide with copper(ii) complexes of two octarepeat sequences belonging to the prion protein was studied, considering both mononuclear and dinuclear systems, i.e. Cu-Ac-(PHGGGWGQ)(2)-NH(2) and Cu(2)-Ac-(PHGGGWGQ)(2)-NH(2), respectively. The NO interaction with both systems was followed in aqueous solutions at physiological pH value, by using UV-Vis and EPR spectroscopic techniques as well as cyclic voltammetry. The mechanism of NO interaction with the mononuclear copper complex can be considered similar to that previously observed for the analogous copper systems with Ac-HGGG-NH(2) and Ac-PHGGGWGQ-NH(2). A more complicated behaviour was found with the copper dinuclear system, in which the involvement of two different intermediate complex species was evidenced. A positive cooperativity between the two copper ions, in the reduction process was inferred. When working with a large excess of the Ac-(PHGGGWGQ)(2)-NH(2) ligand, the frozen-solution EPR parameters pertain to the well characterized [Cu(N(im))(4)](2+) unit, which did not exhibit any interaction with NO. The presence of a free coordination site is the necessary requirement for the NO interaction to occur, as found only in the square-pyramidal geometry of [Cu(L)H(-2)] or [Cu(2)(L)H(-4)] complex species, which form when copper and ligand concentrations are similar.  相似文献   

3.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

4.
The new ditopic catecholamide 3,7,11-tris-{N-[3,4-(dihydroxybenzoyl)-aminopropyl]} derivative of a 14-membered tetraazamacrocycle containing pyridine (H(6)L(1)) has been synthesized. The protonation constants of (L(1))(6-) and the stability constants of its mono-, homo- and hetero-dinuclear complexes with Fe(3+), Cu(2+) and Zn(2+) metal ions were determined at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO(3). The large overall basicity of the ligand was ascribed to the very high protonation constants of the catecholate groups, and its acid-base behaviour was correlated with the presence of tertiary nitrogen atoms and secondary amide functions. The UV-vis spectrum of the red solution of [FeL(1)](3-) complex exhibits the LMCT band of catecholate to iron(III), and its EPR spectrum revealed a typical isotropic signal of a rhombic distorted ferric centre in a high-spin state and E/D approximately 0.31, both characteristic of a tris-catecholate octahedral environment. The ligand forms with copper(II) and zinc(II) ions mono- and dinuclear protonated complexes and their stability constants were determined, except for the [ML(1)](4-) complexes as the last proton is released at very high pH. Electronic spectroscopic studies of the copper complexes revealed the involvement of catecholate groups in the coordination to the metal centre in the mono- and dinuclear copper(II) complexes. This information together with the determined stability constants indicated that the copper(II) ion can be involved in both types of coordination site of the ligand with comparable binding affinity. The EPR spectrum of [Cu(2)L(1)](2-) showed a well resolved seven-line hyperfine pattern of copper(II) dinuclear species typical of a paramagnetic triplet spin state with weak coupling between the two metal centres. Thermodynamically stable heterodinuclear complexes, [CuFeH(h)L(1)](h-1) (h = 0-3) and [CuZnH(h)L(1)](h-2) (h = 0-4), were formed as expected from a ditopic ligand having two dissimilar coordination sites. At physiological pH, the [CuFeL(1)](-) complex is formed at approximately 100%. The formation of the [CuFeH(h)L(1)](h-1) complexes in solution was supported by electronic spectroscopic measurements. The data indicated the specific coordination of each metal centre at the dissimilar sites of the ligand, the iron(III) bound to the oxygen donors of the catecholate arms and the copper(II) coordinated to the amine donors of the macrocyclic ring. The two metal centres are weakly coupled, due to the fairly large distance between them.  相似文献   

5.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

6.
7.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

8.
Self-assembly of the linear segmental ligand L5, consisting of a tridentate binding unit flanked with two bidentate binding units, with a mixture of Fe(II)/Ag(I) yields the trinuclear coordination-captured [2]catenate [AgFeAg(L5)(2)](4+) instead of the planned isomeric double-stranded helicate. Replacing the octahedral (Fe(II)) and tetrahedral (Ag(I)) cations with Zn(II), which is compatible with both geometries, gives intricate mixtures of homometallic complexes upon reaction with the twin ligand L6, from which the macrocyclic dinuclear complex [Zn(2)(L6)](4+) can be isolated. Application of the thermodynamic site binding model attributes the origin of the ligand preference for producing single-stranded macrocycles, the precursors of the trinuclear catenate, to the abnormally low value of the effective molarity controlling the intramolecular connection leading to the usual double-stranded helical isomer.  相似文献   

9.
Enantiopure dinuclear ruthenium polypyridyl complexes of the form [Ru(2)(LL)(4)L(1)](PF(6))(4) (LL = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); L(1)= C(25)H(20)N(4) a bis(pyridylimine) ligand containing a diphenylmethane spacer) have been synthesized using the chiral building blocks cis-[Ru(bpy)(2)(py)(2)](2+) and cis-[Ru(phen)(2)(py)(2)](2+). These dinuclear ruthenium complexes have been characterised using NMR, mass spectrometry, UV-visible absorbance, circular dichroism and linear dichroism. The compounds exhibit good photo and thermal stability. The extinction coefficient for the bpy complex at 478 nm is epsilon(478) = 15,700 mol(-1) cm(-1) dm(3) and for the phen complex is epsilon(478) = 24,900 mol(-1) cm(-1) dm(3). Both complexes have their longest wavelength (metal to ligand charge transfer) transition predominantly x/y (short axis)-polarised while the transitions at shorter wavelength are a mixture of x/y and z-polarisations, similar to both the copper helicate and iron triple helicate studied previously. Cytotoxicity studies reveal that the compounds are dramatically less active against cancer cell lines than the recently reported supramolecular cylinders prepared from the same bis(pyridylimine) ligand.  相似文献   

10.
This article reports the synthesis and optical properties of three dinuclear, cationic copper complexes [Cu(2)(μ-dppm)(2)(μ-L)](NO(3))(2) (dppm diphenyldiphosphinomethane, L: L(A) 3,6-bis(2-pyridyl)-4,5-diphenyl-pyridazine, L(B) 3,6-bis(2-pyridyl)-4,5-di(4-pyridyl)-pyridazine and L(C) 3,6-bis(2-pyridyl)-8,9-diazafluoranthene). These were formed on the reaction of [Cu(μ-dppm)(NO(3))](2) with a series of N-donor (bppn) ligands L. The single crystal X-ray structures of [Cu(2)(μ-dppm)(2)(μ-L)](NO(3))(2)·CH(2)Cl(2) were determined and revealed that in both, the two copper atoms are held by three bridging ligands, two dppm ligands and one bppn ligand acting as a tetradentate bridge. The absorption spectra of the complexes present a MLCT [Cu → π*(N(∧)N)] band in the λ 370-425 nm region. These new complexes exhibit red-orange MLCT-based emission in the solid-state with lifetimes in the microsecond range. In oxygen-free dichloromethane solution, the complex [Cu(2)(μ-dppm)(2)(μ-L(C))](2+) has a long lifetime of 22.8 μs. The long emission lifetimes are attributed to a rigid conformation that precludes the possible distortion of the copper in the excited state.  相似文献   

11.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

12.
Enantiomerically pure, vicinal diols 1 afforded in a two-step synthesis (etherification and subsequent Claisen condensation) chiral bis-1,3-diketones H(2)L((S,S)) (3 a-c) with different substitution patterns. Reaction of these C(2)-symmetric ligands with various transition-metal acetates in the presence of alkali ions generated distinct polynuclear aggregates 4-8 by diastereoselective self-assembly. Starting from copper(II) acetate monohydrate and depending on the ratio of transition-metal ion to alkali ion to ligand, chiral tetranuclear copper(II) cubanes (C,C,C,C)-[Cu(4)(L((S,S)))(2)(OMe)(4)] (4 a-c) or dinuclear copper(II) helicates (P)-[Cu(2)(L((S,S)))(2)] (5) could be synthesized with square-pyramidal and square-planar coordination geometry at the metal center. In analogy to the last case, with palladium(II) acetate double-stranded helical systems (P)-[Pd(2)(L((S,S)))(2)] (6,7) were accessible exhibiting a linear self-organization of ligand-isolated palladium filaments in the solid state with short inter- and intramolecular metal distances. Finally, the introduction of hexacoordinate nickel(II) in combination with lithium hydroxide monohydrate and chiral ligand H(2)L((S,S)) (3 a) allowed the isolation of enantiomerically pure dinuclear nickel(II) coronate [(LiMeOH)(2) subset{(Delta,Lambda)-Ni(2)(L((S,S)))(2)(OMe)(2)}] (8) with two lithium ions in the voids, defined by the oxygen donors in the ligand backbone. The high diastereoselectivity, induced by the chiral ligands, during the self-assembly process in the systems 4-8 could be exemplarily proven by circular dichroism spectroscopy for the synthesized enantiomers of the chiral copper(II) cubane 4 a and palladium(II) helicate 6.  相似文献   

13.
Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 and 2 and those of five other related 1,2,4-triazolato tricopper(II) complexes with the same triangular structure (3-7) (whose crystal structures were already reported) have been investigated in the temperature range of 1.9-300 K. The formulas of 3-7 are [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](NO(3))(2)·H(2)O (3), {[Cu(3)(μ(3)-OH)(aat)(3)(μ(3)-SO(4))]·6H(2)O}(n) (4), and [Cu(3)(μ(3)-OH)(aat)(3)A(H(2)O)(2)]A·xH(2)O [A = NO(3)(-) (5), CF(3)SO(3)(-) (6), or ClO(4)(-) (7); x = 0 or 2] (aat =3-acetylamino-1,2,4-triazolate). The magnetic and electron paramagnetic resonance (EPR) data have been analyzed by using the following isotropic and antisymmetric exchange Hamiltonian: H = -J[S(1)S(2) + S(2)S(3)] - j[S(1)S(3)] + G[S(1) × S(2) + S(2) × S(3) + S(1) × S(3)]. 1-7 exhibit strong antiferromagnetic coupling (values for both -J and -j in the range of 210-142 cm(-1)) and antisymmetric exchange (G varying from to 27 to 36 cm(-1)). At low temperatures, their EPR spectra display high-field (g < 2.0) signals indicating that the triangles present symmetry lower than equilateral and that the antisymmetric exchange is operative. A magneto-structural study showing a lineal correlation between the Cu-O-Cu angle of the Cu(3)OH core and the isotropic exchange parameters (J and j) has been conducted. Moreover, a model based on Moriya's theory that allows the prediction of the occurrence of antisymmetric exchange in the tricopper(II) triangles, via analysis of the overlap between the ground and excited states of the local Cu(II) ions, has been proposed. In addition, analytical expressions for evaluating both the isotropic and antisymmetric exchange parameters from the experimental magnetic susceptibility data of triangular complexes with local spins (S) of (1)/(2), (3)/(2), or (5)/(2) have been purposely derived. Finally, the magnetic and EPR results of this work are discussed and compared with those of other tricopper(II) triangles reported in the literature.  相似文献   

14.
The synthesis and characterization of the complexes of Cu(I), Ag(I), Cu(II), and Co(II) ions with 1,2,5-selenadiazolopyridine (psd) is reported. The following complexes have been prepared: [Cu(2)(psd)(3)(CH(3)CN)(2)](2+)2(PF(6)(-)); [(CuCl)(2)(psd)(3)]; [Cu(2)(psd)(6)](2+)2(ClO(4))(-); [Ag(2)(psd)(2)](2+)2(NO(3))(-); [Ag(2)(psd)(2)](2+)2(CF(3)COO)(-); [Cu(psd)(2)(H(2)O)(3)](2+)2(ClO(4))(-)·(psd)(2); [Cu(psd)(4)(H(2)O)](2+)2(ClO(4))(-)·(CHCl(3)); [Cu(psd)(2)(H(2)O)(3)](2+)2(NO(3))(-)·(H(2)O)·(psd)(2), and [Co(psd)(2)(H(2)O)(4)](2+)2(ClO(4))(-)·(psd)(2). The electronic structure of ligand psd, in particular the bond order of Se-N bonds, has been probed by X-ray diffraction, (77)Se NMR, and computational studies. A detailed analysis of the crystal structures of the ligand and the complexes revealed interesting supramolecular assembly. The assembly was further facilitated by the presence of neutral ligands for some complexes (Cu(II) and Co(II)). The molecular structure of the ligand showed that it was present as a dimer in the solid state where the monomers were linked by strong secondary bonding Se···N interactions. The crystal structures of Cu(I) and Ag(I) complexes revealed the dinuclear nature with characteristic metallophilic interactions [M···M] (M = Cu, Ag), while the Cu(II) and Co(II) complexes were mononuclear. The presence of M···M interactions has been further probed by Atoms in Molecules (AIM) calculations. The paramagnetic Cu(II) and Co(II) complexes have been characterized by UV-vis, ESI spectroscopy, and room temperature magnetic measurements.  相似文献   

15.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers.  相似文献   

16.
The paper reports the synthesis and characterisation of a series of flexible di-bidentate bridging ligands in which two 4-methyl-2,2'-bipyridine groups are linked at the 4'-position by polymethylene (bb(n)), linear polyether (bbO(n)) or linear alkylamine (bbN(n)) chains of varying length (n). The enantiomers (ΔΔ/ΛΛ) of the rac forms of the ruthenium(ii) dinuclear complexes incorporating these ligands -i.e. [{Ru(phen)(2)}(2)(μ-BL)](4+) (phen = 1,10-phenanthroline; BL = bb(n), bbO(n) or bbN(n)) - have been isolated by reaction of Δ- or Λ-[Ru(phen)(2)(py)(2)](2+) (py = pyridine) with the respective bridging ligands. Mononuclear species - in which only one of the bidentate moieties of the bridging ligand is coordinated - have also been isolated, as well as trinuclear and tetranuclear species involving the bb(7) bridge. Fluorescence displacement studies of the DNA-binding of the dinuclear complexes containing the bbO(n) and bbN(n) bridges generally revealed a lower affinity than their bb(n) analogues for an oligonucleotide containing a single bulge site; the mononuclear complexes showed a lower affinity - and the trinuclear and tetranuclear complexes a higher affinity - than the dinuclear species, revealing an interesting interplay of lipophilicity, electrostatics and size in the complex/nucleic acid interaction. Cytotoxicity studies of these complexes against a murine leukaemia cell line revealed that the presence of the polyether or polyamine links in the chain lowered the cytotoxicity compared with their polymethylene analogues, and that the bb(7)-bridged trinuclear and tetranuclear complexes showed considerably enhanced cytotoxicity compared with the dinuclear Rubb(7) analogue.  相似文献   

17.
The synthesis and coordination chemistry of two chiral tetradentate pyridylimine Schiff base ligands are reported. The ligands were prepared by the nucleophilic displacement of both bromides of 1,3-bis(bromomethyl)benzene (2) or 3,5-bis(bromomethyl)toluene (3) by the anion of (S)-valinol, followed by capping of both amine groups with pyridine-2-carboxaldehyde. Both ligands react with CoCl(2) and NiCl(2) to give [M(2)L(2)Cl(2)](2+) complexes. Remarkably, neither fluoride nor bromide ions can act as bridging ligands. The formation of [Co(2)((S)-3)(2)Cl(2)](2+) is highly diastereoselective, and X-ray crystallography shows that both metal centers in the [Co(2)((S)-3)(2)Cl(2)](CoCl(4)) complex adopt the lambda configuration (crystal data: [Co(2)(C(31)H(40)N(4)O(2))(2)Cl(2)](CoCl(4)).(CH(3)CN)(3), monoclinic, P2(1), a = 11.595(2) A, b = 22.246(4) A, c = 15.350(2) A, V = 3705(1) A(3), beta = 110.643(3) degrees, Z = 2). Structurally, the dinuclear complex can be viewed as a helicate with the helical axis running perpendicular to the [Co(2)Cl(2)] plane. The reaction of racemic 2 with CoCl(2) was shown by (1)H NMR spectroscopy to yield a racemic mixture of Lambda,Lambda-[Co(2)((S)-2)(2)Cl(2)](2+) and delta,delta-[Co(2)((R)-2)(2)Cl(2)](2+) complexes; that is, a homochiral recognition process takes place. Spectrophotometric titrations were performed by titrating (S)-3 with Co(ClO(4))(2) followed by Bu(4)NCl, and the global stability constants of [Co((S)-3)](2+) (log beta(110) = 5.7), [Co((S)-3)(2)](2+) (log beta(120) = 11.6), and [Co(2)((S)-3)(2)Cl(2)](2+) (log beta(110) = 23.8) were calculated. The results revealed a strong positive cooperativity in the formation of [Co(2)((S)-3)(2)Cl(2)](2+). Variable-temperature magnetic susceptibility curves for [Co(2)((S)-2)(2)Cl(2)](BPh(4))(2) and [Co(2)((S)-3)(2)Cl(2)](BPh(4))(2) are very similar and indicate that there are no significant magnetic interactions between the cobalt(II) centers.  相似文献   

18.
The interaction of Cu(II) with the ligand tdci (1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol) was studied both in the solid state and in solution. The complexes that were formed were also tested for phosphoesterase activity. The pentanuclear complex [Cu(5)(tdciH(-2))(tdci)(2)(OH)(2)(NO(3))(2)](NO(3))(4).6H(2)O consists of two dinuclear units and one trinuclear unit, having two shared copper(II) ions. The metal centers within the pentanuclear structure have three distinct coordination environments. All five copper(II) ions are linked by hydroxo/alkoxo bridges forming a Cu(5)O(6) cage. The Cu-Cu separations of the bridged centers are between 2.916 and 3.782 A, while those of the nonbridged metal ions are 5.455-5.712 A. The solution equilibria in the Cu(II)-tdci system proved to be extremely complicated. Depending on the pH and metal-to-ligand ratio, several differently deprotonated mono-, di-, and trinuclear complexes are formed. Their presence in solution was supported by mass, CW, and pulse EPR spectroscopic study, too. In these complexes, the metal ions are presumed to occupy tridentate [O(ax),N(eq),O(ax)] coordination sites and the O-donors of tdci may serve as bridging units between two metal ions. Additionally, deprotonation of the metal-bound water molecules may occur. The dinuclear Cu(2)LH(-3) species, formed around pH 8.5, provides outstanding rate acceleration for the hydrolysis of the activated phosphodiester bis(4-nitrophenyl)phosphate (BNPP). The second-order rate constant of BNPP hydrolysis promoted by the dinuclear complex (T = 298 K) is 0.95 M(-1) s(-1), which is ca. 47600-fold higher than that of the hydroxide ion catalyzed hydrolysis (k(OH)). Its activity is selective for the phosphodiester, and the hydrolysis was proved to be catalytic. The proposed bifunctional mechanism of the hydrolysis includes double Lewis acid activation and intramolecular nucleophilic catalysis.  相似文献   

19.
Mondal A  Li Y  Khan MA  Ross JH  Houser RP 《Inorganic chemistry》2004,43(22):7075-7082
The self-assembly of supramolecular copper "tennis balls" that possess unusual magnetic properties using a small pyridyl amide ligand is described. Copper(II) complexes of N-(2-pyridylmethyl)acetamide (HL) were synthesized in methanol. In the absence of base, the mononuclear complex [Cu(HL)(2)](ClO(4))(2) (1) was prepared. The structure of 1, determined by X-ray crystallography, contains a copper(II) ion surrounded by bidentate HL ligands coordinated via the pyridyl N atom and the carbonyl O atom in a trans, square planar arrangement. Reactions carried out in the presence of triethylamine resulted in cluster complexes [Cu(8)L(8)(OH)(4)](ClO(4))(4) and [Cu(8)L(8)(OH)(4)](CF(3)SO(3))(4) [2(ClO(4))(4) and 2(OTf)(4), respectively]. The cationic portions of 2(ClO(4))(4) and 2(OTf)(4) are isostructural, containing eight copper(II) ions, eight deprotonated ligands (L(-)), and four mu(3)-hydroxide ligands. The top and bottom halves of the cluster are related by a pseudo-S(4) symmetry operation and are held together by bridging L(-) ligands. Solutions of 2(ClO(4))(4) and 2(OTf)(4), which were shown to contain the full [Cu(8)L(8)(OH)(4)](4+) fragment by electrospray mass spectrometry and conductance experiments, are EPR silent. Magnetic susceptibility measurements for 2(ClO(4))(4) as a function of temperature and magnetic field showed the Cu ions all to exhibit magnetic moments in the range expected for the d(9) configuration. At low temperatures, the magnetization was reduced due to predominantly antiferromagnetic interactions between ions. Analysis showed that partially frustrated interactions among the four Cu ions making up each half of the cluster gave good agreement with the data once a large molecular anisotropy was taken into account, with J(c) = 106 cm(-1), D = 27 cm(-1), and g = 2.17.  相似文献   

20.
The preparation of three new octadentate tetranucleating ligands made out of two Ru-Hbpp-based units [where Hbpp is 3,5(bispyridyl)pyrazole], linked by a xylyl group attached at the pyrazolate moiety, of general formula (Hbpp)(2)-u-xyl (u = p, m, or o) is reported, together with its dinucleating counterpart substituted at the same position with a benzyl group, Hbpp-bz. All of these ligands have been characterized with the usual analytical and spectroscopic techniques. The corresponding tetranuclear ruthenium complexes of general formula {[Ru(2)(trpy)(2)(L)](2)(μ-(bpp)(2)-u-xyl)}(n+) [L = Cl or OAc, n = 4; L = (H(2)O)(2), n = 6] and their dinuclear homologues {[Ru(2)(trpy)(2)(L)](μ-bpp-bz)}(n+) [L = Cl or OAc, n = 2; L = (H(2)O)(2), n = 3] have also been prepared and thoroughly characterized both in solution and in the solid state. In solution, all of the complexes have been characterized spectroscopically by UV-vis and NMR and their redox properties investigated by means of cyclic voltammetry techniques. In the solid state, monocrystal X-ray diffraction analysis has been carried out for two dinuclear complexes {[Ru(2)(trpy)(2)(L)](μ-bpp-bz)}(2+) (L = Cl and OAc) and for the tetranuclear complex {[Ru(2)(trpy)(2)(μ-OAc)](2)(μ-(bpp)(2)-m-xyl)}(4+). The capacity of the tetranuclear aqua complexes {[Ru(2)(trpy)(2)(H(2)O)(2)](2)(μ-(bpp)(2)-u-xyl)}(6+) and the dinuclear homologue {[Ru(2)(trpy)(2)(H(2)O)(2)](μ-bpp-bz)}(3+) to act as water-oxidation catalysts has been evaluated using cerium(IV) as the chemical oxidant in pH = 1.0 triflic acid solutions. It is found that these complexes, besides generating significant amounts of dioxygen, also generate carbon dioxide. The relative ratio of [O(2)]/[CO(2)] is dependent not only on para, meta, or ortho substitution of the xylylic group but also on the concentration of the starting materials. With regard to the tetranuclear complexes, the one that contains the more sterically constrained ortho-substituted ligand generates the highest [O(2)]/[CO(2)] ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号