首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have developed a resonance light scattering (RLS) quenching assay for the highly sensitive determination of doxorubicin (DOX) and daunorubicin (DAU). It is based on the reduction of the intensity of the shoulder of the RLS spectra at 443?nm. The intensity of the RLS of the ethidium-DNA system decrease linearly on addition of trace quantities of DOX or DAU within the concentration range of 0.008 to 12.0???g?mL?1 for DOX, and of 0.010 to 21.0???g?mL?1 for DAU. The detection limits are 3.0 and 5.0?ng?mL?1, respectively. The assay was successfully applied to the determination of DAU in synthetic and serum samples. Compared to the reported methods for anthracyclines, this assay displays higher sensitivity, lower detection limits, and a wider linear range.
Graphical abstract
The addition of trace amount of drugs into the EB-DNA system can induce the decreased RLS intensity of EB-DNA system at the shoulder peak in BR buffer solution (pH 2.0). Besides, the decrement of RLS intensities was proportional to the concentration of drugs. Based on this phenomenon, a new RLS assay for the detection of anthracycline antibiotics was developed.  相似文献   

2.
In the present work, we described the preparation of iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite (GR-MWCNTs/FeNPs) modified glassy carbon electrode (GCE) and its application for the sensitive determination of nitrite. First, GR-MWCNTs/FeNPs nanocomposite has been prepared by a simple solution-based approach via chemical reduction and then it was characterized. Afterwards, GR-MWCNTs/FeNPs/GCE was prepared and employed for the electrocatalysis of nitrite. Electrocatalytic oxidation of nitrite at the GR-MWCNTs/FeNPs/GCE has been significantly improved in terms of both reduction in overpotential and increase in peak current. Therefore, the modified electrode was employed for amperometric determination of nitrite which exhibited excellent analytical parameters with wide linear range of 1?×?10?7 M to 1.68?×?10?3 M and very low detection limit of 75.6 (±1.3)?nM. The proposed sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferrants. Good recoveries achieved for the determination of nitrite in various water samples reveal the promising practicality of the sensor. In addition, the sensor displays an acceptable repeatability and reproducibility along with appreciable storage and excellent operational stabilities.
Figure
Schematic representation for the preparation of GR-MWCNTs/FeNPs nanocomposite and its electrocatalysis towards nitrite  相似文献   

3.
The effect of thiol compounds on the kinetics of the aggregation of gold nanoparticles in the presence of the cationic surfactant cetyltrimethyl ammonium bromide has been studied. It was applied to the determination of N-acetylcysteine using the stopped-flow mixing technique along with light scattering detection. The signal obtained was measured after about 5?s, and gave the analytical information for a calibration graph in the concentration range from 2.9 to 60???mol?L?1 of N-acetylcysteine, and a detection limit of 0.87???mol?L?1. The effect of other thiols on the system is also described. The relative standard deviation ranges between 0.6% and 3.5%. The method was applied to the determination of N-acetylcysteine in several pharmaceutical samples with recoveries that range from 97.7% to 101.1%.
Figure
S1, S2: stopped-flow driving syringes  相似文献   

4.
We report on the detection of trace quantities of melamine (MA) by a colorimetric method that exploits the conformational change of hemin G-quadruplex-DNAzyme. The addition of MA to hemin G-quadruplex-DNAzyme structure containing thymine bases causes the thymine in the DNAzyme to interact with MA via a stable triple H-bond and leads to a conformational change. This, in turn, affects the peroxidase-like activity of hemin which is determined colorimetrically at 450 nm by adding 3,3’,5,5’-tetramethylbenzidine and hydrogen peroxide. The method was applied to the colorimetric determination of MA over a wide range of concentrations (0.2 to 24 μM) with a detection limit of 80 nM. The effect also can be detected with bare eyes. The method was successfully applied to the determination of MA in spiked milk powder.
Figure
A novel, simple and rapid, visual colorimetric method is applied for the detection of melamine with a wide range of 8?×?10?7 M to 1?×?10?3 M and low detection limit of 2.7?×?10?7 M.  相似文献   

5.
A glassy carbon electrode modified with organic?Cinorganic pillared montmorillonite was used for voltammetric detection of mercury(II) in water. High sensitivity is obtained due to the use of the montmorillonites which displays outstanding capability in terms of adsorbing mercury ion due to its high specific surface and the presence of multiple binding sites. The experimental parameters and the effect of a chelating agent were optimized to further enhance sensitivity and selectivity. Linear calibration curves were obtained over the Hg(II) concentration range from 10 to 800???g?L?1 for 5?min accumulation, with a detection limit of 1???g?L?1. Simultaneous determination of Hg(II) and Cu(II) was also studied, and no interference was observed.
Figure
Scheme for the Organic-inorganic pillared clay adsorbing mercury.  相似文献   

6.
We report on newly synthesized Ag(I)-filled multiwall carbon nanotubes as a potential sensing element in ion-selective carbon paste electrodes for the determination of free cyanide in aqueous solution. The electrode was obtained by entrapping the silver-filled nanotubes into a carbon paste and displays a Nernstian response with a slope of 59.8?±?0.3?mV decade?1, a very wide linear range (from 21.0?nM to 0.1?M of cyanide), a lower detection limit of 13.0?nM, and a response time of <2?min. The operational lifetime is up to 3?months without significant deviation in normal function.
Figure
Silver(I)-filled Multiwall Carbon Nanotube as Sensing Element in Cyanide-selective Carbon Paste Electrode  相似文献   

7.
We report on the electrochemical formation of copper oxide nanoparticles (CuO-NPs) at a carbon ceramic electrode (CCE) as a highly-porous substrate. A copper film was deposited on the surface of the CCE and derivatized in situ to give CuO-NPs by potential cycling between ?0.8 and 0.35?V in strongly alkaline solution. The electrode was characterized by scanning electron microscopy and cyclic voltammetry. The CuO-NPs exhibited excellent electrocatalytic activity toward the oxidation of L-tyrosine (L-Tyr) in responding linearly in the 2 to 1,350???M concentration range, an associated detection limit (S/N?=?3) of 160?nM, and a sensitivity of 0.61?A?M?1?cm?2.
Cyclic voltammograms of the bare CCE (a, c) and nano-copper oxide coated CCE (b, d) in 0.05?mol L?1 NaOH solution in the absence (a, b) and presence of 6?mmol L?1 L-Tyr (c, d) at scan rate of 50?mV?s?1  相似文献   

8.
A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2?min in ?0.4?V, this followed by an anodic potential scan between +0.2 and?+?0.6?V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0?×?10?8 to 1.0?×?10?5?mol?L?1, with a detection limit of 1.8?×?10?9?mol?L?1 after an accumulation time of 120?s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1???M concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters.
Figure
Differential pulse voltammogram (DPV) of Ag+ solution at MCPE  相似文献   

9.
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0???g?mL?1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2?mV per decade, a linear range from 79???M to 2.5?mM, a detection limit of 20???g?mL?1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products.
Figure
?  相似文献   

10.
We report on a carbon paste electrode that was modified with a binuclear manganese(II) complex by the drop-coating method. A study on the mechanism of the electro-oxidation of tryptophan (Trp) at this electrode indicated that it enables Trp to be determined with good sensitivity and selectivity. Second-order derivative linear sweep voltammetry at pH 4.1 revealed that a sensitive anodic peak appears at 812?mV (vs. SCE) whose current is proportional to the concentration of Trp in the concentration range from 0.1 to 1.0???mol?L?1 and 1.0 to 80???mol?L?1, with a detection limit (S/N?=?3) of 0.08???mol?L?1 (60?s of accumulation). The method was applied to the determination of Trp in amino acid injection solutions with satisfactory results.
Figure
The electrochemical behavior of tryptophan at a carbon paste electrode modified with a binuclear manganese(II) complex Mn2(phen)2(p-MBA)4(H2O) was investigated. The modified electrode showed high electrocatalytic activity toward the oxidation of tryptophan and the peak current increases linearly with tryptophan concentration in the range of 0.1 to 80???mol L?1.  相似文献   

11.
We report on a novel electrochemical method for the sensitive determination of trace zirconium (Zr) at a glassy carbon electrode modified with a film of acetylene black containing dihexadecyl hydrogen phosphate and in the presence of alizarin violet (AV). The method is based on the preconcentration of the Zr(IV)-AV complex at a potential of ?200?mV (vs. SCE). The adsorbed complex is then oxidized, producing a response with a peak potential of 526?mV. Compared to the poor electrochemical signal at the unmodified GCE, the electrochemical response of Zr(IV)-AV complex is greatly improved, as confirmed by the significant increase in peak current. The effects of experimental conditions on the oxidation current were studied and a calibration plot established. The oxidation current is linearly related to the Zr(IV) concentration in the 8.0?pM to 10?nM concentration range (cAV?=?0.2???M) and 10?nM ~0.6???M (cAV?=?2.0???M), and the detection limit (S/N?=?3) is as low as 4.0?pM for a 3-min accumulation time. The method was successfully employed to the determination of zirconium in standard ore samples.
Figure
A glassy carbon electrode modified with acetylene black-dihexadecyl hydrogen phosphate composite film was used as a novel voltammetric sensor for zirconium(Zr) determination. The stripping peak current at 526?mV exhibits good linearity with concentration of Zr in the range of 8.0?pM to to 0.6???M.  相似文献   

12.
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. The characteristics of the sensor were studied by UV?Cvis spectroscopy and electrochemical methods. The immobilized Hb retained its native secondary structure, undergoes direct electron transfer (with a heterogeneous rate constant of 3.37?±?0.5?s?1), and displays excellent bioelectrocatalytic activity to the reduction of HP. Under the optimal conditions, its amperometric response varies linearly with the concentration of HP in the range from 0.9???M to 17???M. The detection limit is 0.4???M (at S/N?=?3). Due to the commercial availability and low cost of activated carbon nanoparticles, it can be considered as a useful supporting material for construction of other third-generation biosensors.
Figure
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. It can be considered as a useful supporting material for construction of other third-generation biosensors.  相似文献   

13.
We present a modified glassy carbon electrode as a sensing platform for glucose. It is based on a composite film prepared from Ni(II) ion, quercetin and graphene. The sensor was characterized by cyclic voltammetry. The electron transfer coefficient, reaction rate constant and catalytic rate constant were determined and found to be 0.53, 5.4?s?1 and 2.93?×?103?M?1 s?1, respectively. The catalytic current depends linearly on the concentration of glucose in the range from 3 to 900???M, with a detection limit of 0.5???M (at an S/R of 3). The sensor exhibits good reproducibility, stability, fast response, and high sensitivity.
Figure
Cyclic voltammograms of Ni(II)-Qu/Gr/GCE in 0.1?M NaOH solution at various scan rates (from inner to outer): 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0?V·s?1. Plot of I p versus ??1/2 and E p versus log??.  相似文献   

14.
A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550?mV in linear sweep voltammograms at pH?7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10?nM to 104?nM, the correlation coefficient being 0.9983, and the detection limit (S/N?=?3) being 5.0?nM. The method was successfully applied to the determination of BPA in food package.
Figure
A new electrochemical method was developed for the determination of bisphenol A based on carboxylated multi-walled carbon nanotubes modified electrode.  相似文献   

15.
We have evaluated an in-situ ionic liquid-dispersive liquid-liquid microextraction procedure for the determination of six endocrine disrupting phenols in seawaters and industrial effluents using HPLC. The optimized method requires 38???L of the water-soluble ionic liquid 1-butyl-3-methylimidazolium chloride, and 5?mL of seawater or industrial effluent. After appropriate work-up, a drop (~10???L) of an ionic liquid is formed that contains the analytes of interest. It is diluted with acetonitrile and injected into the HPLC system. This procedure is accomplished without heating or cooling the solutions. The method is characterized by (a) average relative recoveries of 90.2%, (b) enrichment factors ranging from 140 to 989, and (c) precisions (expressed as relative standard deviations) of less than 11% when using a spiking level of 10?ng?mL?1. The limits of detection range from 0.8?ng?mL?1 for 4-cumylphenol to 4.8?ng?mL?1 for bisphenol-A.
Figure
Scheme of the in situ IL-DLIME procedure to determine endocrine disrupting phenols in environmental waters.  相似文献   

16.
A solid bar microextraction (SBME) method containing sorbent materials 2?mg in the lumen of a porous hollow fiber membrane 2.5?cm for the extraction of carbamazepine, diclofenac and ibuprofen from river water samples is described. The desorbed analytes were analyzed using reversed-phase high performance liquid chromatography with ultraviolet detection. In order to achieve optimum performance, several extraction parameters were optimized. Of the sorbents evaluated, LiChrosorb RP-8 was the most promising. Under the optimized conditions, limits of detection from 0.7 to 0.9???g?L?1, precisions from 5.5 to 6.4% and a correlation coefficient of 0.999 were obtained for the target drugs over a concentration range of 1?C200???g?L?1. In comparison with the solid phase extraction, the SBME system offers distinct advantages due to its higher enrichment factors, lower consumption of organic solvents and time saving.
A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water  相似文献   

17.
A simple, cheap, and nonpolluting method was developed for the cloud point extraction of gold (Au) and palladium (Pd). It is based on the complexation reaction of Au and Pd with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and micelle mediated extraction of the complex using the non-ionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (PONPE 7.5). Under the optimized experimental conditions, the enrichment factors are 16 and 17 for Au and Pd, respectively, for 15?mL of preconcentrated solution. The limits of detection are 3.8???g?L?1 and 1.8???g?L?1 for Au and Pd, respectively. The relative standard deviations are 1.4% for Au and 0.6% for Pd (n?=?11). The method was successfully applied to the determination of Au and Pd in certified reference materials and mine samples.
Figure
CPE of gold(III) and palladium(II)  相似文献   

18.
We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0.3?V and pH 6.8, the sensor displays a sensitivity of 57.0?μA?mM?1?cm?2, a response time of <5?s, a linear dynamic range from 0.01 to 15.2?mM, a correlation coefficient of 0.9985, and a detection limit of 2?μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples.
Figure
Mesoporous hydroxyapatite, titanium dioxide and multi-walled carbon nanotubes were ultrasonically mixed to form a rough nanofilm, and a new glucose biosensor was fabricated based on this nanofilm. The biosensor had great bioelectrocatalytic activity to glucose oxidation, and it exhibited a high sensitivity, wide linear dynamic range and high selectivity for glucose determination.  相似文献   

19.
Multicolor and water-soluble CdTe quantum dots (QDs) were synthesized with thioglycolic acid (TGA) as stabilizer. These QDs have a good size distribution, display high fluorescence quantum yield, and can be applied to the ultrasensitive detection of Pb(II) ion by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and quenching of luminescence is most effective for the smallest particles. The quenching mechanism is discussed. Fairly selective detection was accomplished by utilizing QDs with a diameter of 1.6?nm which resulted in a detection limit of 4.7?nmol?L?1 concentration of Pb(II). The method was successfully applied to the determination of Pb(II) in spinach and citrus leaves, and the results are in good agreement with those obtained with atomic absorption spectrometry.
Figure
Five colors water-soluble CdTe QDs are synthesized with thioglycolic acid as a stabilizer. These QDs can be applied to the ultrasensitive detection of Pb2+ by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and the quenching of luminescence is most effective when the smallest particles are used. The detection limit is 4.7?nmol?L?1 when QDs-I (1.6?nm) are used, which is the lowest in the current related study.  相似文献   

20.
Ordered mesoporous carbon (OMC) was synthesized and used to modify the surface of a glassy carbon (GC) electrode. Due to the unique properties of OMC, a decrease in the overvoltage of the reduction potential of methyl parathion (MP) (to ca. 219 mV) and a 76-fold increase in the peak current are observed (compared with a bare GC electrode). The absorption capacity of the surface of the electrode for MP was determined by chronocoulometry. The results show that the Г value of the modified electrode (2.34?×?10–9 mol cm–2) is 9.5 times as large as that of the GC electrode (2.47?×?10–10 mol cm–2). The new electrode exhibits synergistic electrocatalytic and accumulative effects on MP. MP can be determined by linear sweep voltammetry (LSV) which displays a linear relationship between peak current and MP concentration in the range from 0.09 to 61 μM, with a detection limit as low as 7.6 nM (at an S/N of 3) and after an accumulation at 0 V for 5 min. The electrode was successfully applied to the determination of MP in spiked lake water samples.
Figa
A glassy carbon (GC) electrode modified with ordered mesoporous carbon (OMC) performed an enhanced electrocatalytic activity and accumulative effect towards methyl parathion (MP). The electrode also exhibited wider linear range, lower detection limit, better electrochemical stability and utilization for MP determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号