首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four chiral stationary phases, based on the phenylcarbamate derivatives of amylose or cellulose: Chiralcel OD-H, Chiralpak AD, Lux Cellulose-2 and Lux Amylose-2, were evaluated for the enantiomeric separation of an acetamide chiral intermediate, the (4S-trans)-4-(ethylamino)-4-(N-acetamide)-5,6-dihydro-(6S)-methyl-4H-thieno-[2,3-b]thiopyran-7,7-dioxide, using SFC. The effect of the different modifiers and temperatures, on the separation, was also studied. The chiral separation could not be achieved using the Chiralpak AD column, nevertheless the other columns provided excellent results with analysis times close to 6 min and resolutions higher than 2. The highest enantioresolutions and retentions were obtained with the Lux Cellulose-2 column and 2-propanol as organic modifier. The isoelution temperatures were estimated from the van't Hoff plots, and in all the cases they were above the temperature range studied which means that the enantiomeric separation was enthalpy driven.  相似文献   

2.
Armodafinil is a unique psychostimulant recently approved by the US Food and Drug Administration for the treatment of narcolepsy. The chromatographic resolution of its chiral intermediates including related substances in the total synthesis of armodafinil was studied on polysaccharide-based stationary phases, viz. cellulose tris-(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) by HPLC. The effects of 1-propanol, 2-propanol, ethanol, and trifluoroacetic acid added to the mobile phase and of column temperature on resolution were studied. A good separation was achieved on cellulose-based Chiralcel OD-H column compared to amylose-based Chiralpak AD-H. The effects of structural features of the solutes and solvents on discrimination between the enantiomers were examined. Baseline separation with R(s) >1.38 was obtained using a mobile phase containing n-hexane-ethanol-TFA (75:25:0.15 v/v/v). Detection was carried out at 225 nm with photodiode array detector while identification of enantiomers was accomplished by a polarimetric detector connected in series. The method was found to be suitable not only for process development of armodafinil but also for determination of the enantiomeric purity of bulk drugs and pharmaceuticals.  相似文献   

3.
The enantiomers of 1-phenyl-1,2,3,4-tetrahydroisoquinoline have been directly separated on polysaccharide-based chiral stationary phases (CSPs). The normal phase separation of (S)- and (R)-1-phenyl-1,2,3,4-tetrahydroisoquinoline was accomplished by screening of the immobilized Chiralpak IC column with different eluents. The effect of mobile phase type on retention, selectivity and resolution was studied. 2-Propanol or ethanol/n-hexane/ethanolamine mixtures were applied as mobile phases by screening of following polysaccharide-based immobilized (Chiralpak IA, Chiralpak IC) and coated (Lux Cellulose-1, Lux Cellulose-2, Lux Amylose-2) CSPs. Polar organic and reversed-phase conditions were also tested for direct enantioseparation of 1-phenyl-1,2,3,4-tetrahydroisoquinoline.  相似文献   

4.
本文运用涂敷型(Chiralpak AD-H)和键合型(Chiralpak IA)两种淀粉类手性固定相高效液相色谱法,进行了新型含苯并噻唑α-氨基膦酸酯类化合物的手性分离。从色谱分离的保留因子(k)、分离系数(α)和分离度(Rs)三个方面考察了两种类型色谱柱的分离性能,上述化合物在Chiralpak IA柱上能够得到较好的基线分离。同时,讨论了温度、流动相极性和目标分析物的结构等因素对Chiralpak IA柱分离性能的影响。由于键合型固定相较稳定的性能,使某些非常规的溶剂(如THF)成功地应用于手性α-氨基膦酸酯类化合物的分离。  相似文献   

5.
Separation of the enantiomers of each of three different racemates, neutral rac-alpha-tetralol, acidic rac-2-phenylpropionic acid, and basic rac-1-phenylethylamine, using subcritical and supercritical fluid chromatography with two different chiral stationary phases, heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (Sumichiral OA-7500 column) and tris(3,5-dimethylphenylcarbamate) of amylose (Chiralpak AD-H column), was compared. The elution order of the enantiomers of the three racemates was determined, and the effects of the type of alcohol modifier, column oven temperature, mobile phase composition, flow rate, and pressure were examined. The most appropriate column oven temperature depended on both the type of alcohol modifier and the compound analyzed. Lower alcohol content improved the peak separation of both rac-alpha-tetralol on the Sumichiral OA-7500 column and rac-1-phenylethylamine on the Chiralpak AD-H column, while the same phenomenon was not observed with either rac-alpha-tetralol or rac-2-phenylpropionic acid on the Chiralpak AD-H column. Decreasing outlet pressure improved the peak separation obtained with rac-2-phenylpropionic acid, but had little effect on either rac-alpha-tetralol or rac-1-phenylethylamine.  相似文献   

6.
Summary The chromatographic separation and resolution of the enantiomers of flurbiprofen and its two major metabolites, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen was investigated using four different approaches: reversed-phase HPLC after pre-column derivatization with (R)-1-(naphthen-1-yl)ethylamine; reversed-phase HPLC using hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive; chiral-phase HPLC using either an α1-acid glycoprotein CSP (Chiral-AGP) or an amylose tris(3,5-dimethylphenylcarbamate) CSP (Chiralpak AD). Of all the approaches, only the direct method using the Chiralpak AD CSP demonstrated separation and enantiomeric resolution of all three analytes within an acceptable run time of 45 minutes. Enantiomeric resolution values of 1.67,3.67 and 3.44 were obtained for flurbiprofen, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen respectively. Semi-preparative isolation of the individual enantiomers of both metabolites, followed by CD analysis, revealed that the elution order on the AD CSP wasR-beforeS-enantiomer for both metabolites and the same as that observed for flurbiprofen. The metabolite elution order was subsequently confirmed on the analysis of urine samples obtained from a healthy volunteer following oral administration of the individual drug enantiomers.  相似文献   

7.
The solvent versatility of Chiralpak IA, a new chiral stationary phase (CSP) containing amylose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the enantioselective separation of a set of cyclopropane derivatives using ethyl acetate or dichloromethane (DCM) as non-standard mobile phase eluent and diluent, respectively in high-performance liquid chromatography (HPLC). A comparison of the separation of cyclopropanes on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) in HPLC using a mixture of n-hexane/2-propanol (90/10 and 99/1, v/v) as mobile phase with a flow rate of 0.5 ml/min and UV detection at 254 nm, is demonstrated. The optimized method of separation is used for an online HPLC monitoring for the Rh(II)-catalyzed asymmetric intermolecular cyclopropanations in dichloromethane. Direct analysis techniques without further purification, workup or removal of dichloromethane were summarized. The method provides an easy and direct determination of the enantiomeric excess of the cyclopropanes and selectivity of the catalyst used without any further work up.  相似文献   

8.
Jiang M  Qin F  Xiong Z  Zhang S  Pan L  Li F 《色谱》2011,29(11):1137-1140
以纤维素三-(3,5-二甲基苯基氨基甲酸酯)为手性固定相(Lux Cellulose-1),建立了在正相色谱条件下直接分离盐酸川丁特罗对映体的高效液相色谱法。考察了乙醇、异丙醇等有机改性剂,三氟乙酸、二乙胺等流动相添加剂和柱温对对映体分离的影响。结果显示,酸性和碱性添加剂对对映体分离的影响最为显著: 添加二乙胺时两对映体无分离趋势;添加三氟乙酸时对映体保留强,且分离趋势明显;而同时添加三氟乙酸和二乙胺则两对映体分离显著改善,分离度可达4.0。优化后的色谱条件: 色谱柱为Lux Cellulose-1手性柱(250 mm×4.6 mm, 5 μm),流动相为正庚烷-乙醇-三氟乙酸-二乙胺(88:12:0.3:0.05, v/v/v/v),流速为1.0 mL/min,紫外检测波长为246 nm,柱温为25 ℃。该方法简便,快速,可用于左旋盐酸川丁特罗原料中右旋异构体杂质的检查。  相似文献   

9.
HPLC on chiral stationary phases has been used for the enantioselective assay of propafenone (PPF), 5-hydroxypropafenone (PPF-50H) and N-despropylpropafenone (PPF-NOR) enantiomers. The results obtained on Chiralpak AD column showed that it is useful for the resolution of PPF and of its main metabolites, although the peaks obtained for PPF-NOR were not symmetrical under the conditions investigated. This column and circular dichroism-based detection system were used to determine the absolute configuration of the eluates. Furthermore, the influence of the mobile phase composition on the resolution of PPF and of its main metabolites was investigated on cellulose derivatives (Chiralcel OD-H and Chiralcel OD-R) and protein (Chiral AGP and Ultron ES-OVM)-based chiral stationary phases. The enantiomers of PPF were resolved on all the columns, except for the Ultron ES-OVM. This column, the Chiralpak AD and the Chiralcel OD-H columns were suitable for the resolution of the PPF-50H enantiomers. The PPF-NOR enantiomers were resolved on the Chiralpak AD, Chiral AGP and Chiralcel OD-R columns.  相似文献   

10.
Four polysaccharide-based chiral stationary phases have been used to separate the enantiomers of fourteen O,O-dialkyl-1-benzyloxycarbonyl-aminoarylmethyl phosphonates. These polysaccharide-based chiral stationary phases are Chiralpak AD, Chiralpak AS, Chiralcel OG and Chiralcel OJ. The data obtained indicate that the chiral separation ability for these organophosphonate compounds are in the order Chiralpak AD > Chiralcel OG > Chiralcel OJ > Chiralpak AS. With Chiralpak AD, all of the studied compounds could be easily baseline separated. Those two polysaccharides possess different chiral discrimination mechanism due to of the difference of the conformational structures of amylose and cellulose. The chiral discrimination of derivatized amylose chiral stationary phases were based on the stereogenic fit of the analytes in the helical structures of amylose and the transient diastereomeric complex formation between the analyte and the amylose CSP through π–π interaction H-bond interactions and induced dipole interactions exerted by the substituents on the analyte molecules. The chiral discrimination, in case of derivatized cellulose chiral stationary phase is based on the stereogenic fit of the analytes in the grooves of cellulose followed by interactions mentioned above between the analytes and the cellulose CSP.  相似文献   

11.
trans-(-)-Paroxetine is a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor currently used as an antidepressant. trans-(+/-)-3-Ethoxycarbonyl-4-(4'-fluorophenyl)-1-methylpiperidine-2,6-dione is an important intermediate of trans-(-)-paroxetine. It was separated on amylose and tartaric acid-based chiral stationary phases by HPLC. The equilibrium constants and overall mass transfer coefficients together with the axial dispersion coefficients were experimentally determined by moment analysis based on the lumped kinetic model of chromatography. In case of Kromasil CHI-TBB, the equilibrium constants measured were found to be 8.36 and 9.37 for trans-(+) and trans-(-) enantiomers, respectively. For Chiralpak AD-H, the equilibrium constants were 6.68 and 4.13 for trans-(+) and trans-(-) enantiomers, respectively. The axial dispersion coefficients of both enantiomers on Kromasil CHI-TBB column were about one order of magnitude greater than on Chiralpak AD-H. Fast kinetics of mass transfer in both chiral stationary phases was observed. Their overall mass transfer coefficients on Kromasil CHI-TBB and Chiralpak AD-H were 32.12, 33.18, 26.50, 46.85 s(-1) for trans-(+) and trans-(-) enantiomers, respectively. The parameters obtained were utilized to simulate the elution profiles, and the simulated and experimental results match well, which confirmed that the parameters obtained in this study were valid.  相似文献   

12.
The couple of chiral sulfur compounds α-lipoic acid (ALA)/α-dihydrolipoic acid (DHALA) has attracted considerable attention in recent years owing to its remarkable anti-inflammatory and antioxidant properties. It is well known that the chirality of the C6 plays a key role in determining the biological activity of ALA. The natural occurring (R)-ALA enantiomer is an essential cofactor for key oxidative metabolism enzyme complexes and, after oral administration of the racemic mixture, it shows higher plasma concentration than (S)-ALA. Differently, the in vivo enantioselective action difference between the enantiomers of DHALA has not yet been studied. This lacking is perhaps due to the unavailability of analytical methods capable of determining the enantiomeric composition of biological samples during pharmacokinetic and pharmacodynamic events. In the present work, the direct and baseline enantioresolution of both chiral acids by HPLC on two amylose-derived chiral stationary phases is presented. The proposed chiral enantioselective protocol, therefore, does not require pre- or on-column derivatization. The performance of the coated Chiralpak AS-H CSP and the new immobilized Chiralpak IH-3 CSP, which have the same chiral selector amylose tris-[(S)-α-methylbenzylcarbamate], were compared using conventional normal-phase mobile phases containing ethanol or 2-propanol as alcoholic solvents and a fixed percentage of trifluoroacetic acid. Nonconventional eluents containing dichloromethane, ethyl acetate, and 2-methyltetrahydrofuran as organic cosolvents were applied in the separation of the enantiomers of two carboxylic acids on the immobilized Chiralpak IH-3 CSP. The effect of the column temperature was carefully evaluated in order to improve enantioselectivity. Adequate amounts of enantiomers were isolated by an analytical-size Chiralpak IH-3 column and submitted to chiroptical measurements. The absolute configuration assignment of the isolated enantiomers was determined by a multidisciplinary procedure based on the comparison of the experimental and calculated chiroptical properties.  相似文献   

13.
The polysaccharide chiral stationary phases (CSPs) Chiralcel OD and Chiralpak AD, and the brush-type (R,R)-Whelk-01 chiral stationary phases have been evaluated to separate new synthetic pyrrolylphenylethanoneamine racemic compounds, potentially monoamine oxidase (MAO) inhibitors, under various mobile phase compositions, using various temperatures. The enantioseparation was evaluated by comparing the (R,R)-Whelk-01 column performance with those of Chiralpak AD and Chiralcel OD. Significant differences were observed in their chiral recognition, as revealed from their retention, selectivity, resolution and elution order. Performances of the Chiralpak AD column were superior to those of the Chiralcel OD and (R,R)-Whelk-01 columns. Some of the racemic compounds were resolved by semipreparative chromatography on Chiralpak AD column in order to study the chiroptical proprieties of the single enantiomers.  相似文献   

14.
M. Yarim  S. Sarac 《Chromatographia》2002,56(5-6):307-312
Summary Analytical HPLC methods using derivatized cellulose chiral stationary phases have been developed for separation of the enantiomers of 25 racemic 4-aryl-7,7-dimethyl- or 1,77-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-diones, condensed derivatives of dihydropyrimidines. The enantiomers of the compounds were resolved by normal-phase chromatography on silica-based cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD) and amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD) columns with mobile phases consisting of mixtures ofn-hexane and an alcohol (2-propanol, ethanol, or methanol) in different proportions. The mobile phase and the chiral stationary phase were varied to achieve the best resolution. The effect of the concentration of alcohol in the mobile phase was studied. The resolution obtained on the two columns was complementary.  相似文献   

15.
利用手性HPLC法对天然产物(+)-巴拉苏酰胺(balasubramide)及其对映体进行分离和光学纯度测定。在手性分离过程中,考察了两种不同的手性固定相和不同比例的流动相(正己烷和异丙醇),以进行手性分离方法的优化。结果表明:正己烷和异丙醇(70/30,V/V)在手性柱Chiralpak AD-H上获得最佳分离。光学活性的巴拉苏酰胺的对映体过量值高于98%,其分离因子(α)和分离度为2.15和21.80。本研究为光学活性的巴拉苏酰胺及其后续衍生物光学纯度控制提供了方法学基础。  相似文献   

16.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

17.
建立了以直链淀粉衍生物为手性固定相的高效液相色谱-串联质谱(HPLC-MS/MS)直接拆分普萘洛尔、美托洛尔、阿罗洛尔和卡维地洛4种β-受体阻滞剂对映体的方法。考察了手性固定相的种类、流动相改性剂和添加剂的体积分数、柱温和流速等对4种药物对映体分离的影响。结果表明:在Chiralpak AD-H手性色谱柱上,在正己烷-乙醇-二乙胺(20∶80∶0.03,v/v/v)为流动相、流速0.550 mL/min、柱温40℃的条件下,普萘洛尔、美托洛尔、阿罗洛尔和卡维地洛对映体均达到基线分离,分离度分别为1.37、1.80、2.09和4.70。通过热力学研究及对映体结构分析对拆分机理进行了探讨,发现4种药物对映体的手性拆分均为焓驱动过程,而固定相的手性空腔对不同药物的拆分影响较大。研究结果为β-受体阻滞剂的深入研究提供了参考方法。  相似文献   

18.
A novel polysaccharide-based chiral stationary phase (CSP), cellulose tris(3-chloro-4-methylphenylcarbamate), also known as Sepapak-2 or Lux Cellulose-2, has been evaluated for the enantiomeric separation of FMOC derivatives of amino acids. After mobile-phase optimization in nano liquid chromatography (nano-LC) the column enabled the enantiomeric separation of 19 out of 23 amino acids tested, indicating the high chiral recognition power of this new CSP. Subsequently, a comparison of the driving force employed (pressure or voltage) was carried out comparing nano-LC and CEC under the same conditions. Better peak efficiencies and resolution were observed by using CEC experiments, which enabled the chiral discrimination of 20 out of 23 amino acids tested. Finally, in order to show the potential of this new CSP, the determination of the content and the enantiomeric purity of the non-protein amino acid citrulline in food supplements was performed. For that purpose, the method was optimized, evaluated and applied to different commercial samples.  相似文献   

19.
The enantiomeric separation using high-performance liquid chromatography (HPLC) on chiral stationary phases (CSPs) of a chiral compound which exists in solution in several tautomeric forms is described. 2,4-Dioxo-5-acetamido-6-phenylhexanoic acid is the most potent inhibitor known for peptidylamidoglycolate lyase (PGL, EC 4.3.2.5), an enzyme which plays an essential role in carboxyl-terminal amidation of many biological peptides. Synthesis of this inhibitor entails an alkaline hydrolysis step, under which condition the compound is racemized; thus, HPLC with a CSP was employed to obtain the individual enantiomers of this inhibitor. Since 2,4-dioxo-5-acetamido-6-phenylhexanoic acid exists in solution in several tautomeric forms, the strategy of first converting this compound from its multiple enol forms into a single diketo tautomer, which was then applied to various CSPs, was employed. Successful preparative scale enantiomeric separation of this compound was achieved using a Chiralpak AD CSP. Enantiomeric separation was also accomplished on a D-penicillamine column, but this CSP was found to be less satisfactory for preparative purposes.  相似文献   

20.
A chiral separation method for glycidol enantiomers determination by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry was developed. Two chiral stationary phases, amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) and (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl) ethylamine (SUMICHIRAL OA-4900) have been investigated. The effects of the mobile phase composition, elution program and column temperature were also studied. Under the best conditions: Chiralpak AD-H column, mobile phase composition n-hexane:ethanol (70:30, v/v), flow rate of 0.8 mL/min and 40 °C column temperature, a good resolution (Rs = 1.6) for both enantiomers has been achieved with an analysis time of 16 min. The method was found to be linear in the range from 100 to 500 ppm for both glycidol enantiomers with a good determination coefficient (r2 higher than 0.99) and good precision. Limits of detection of 31 and 50 ppm for (R)-(+)-glycidol and (S)-(−)-glycidol, respectively, were obtained. The method was applied to the determination of the enantiomeric excess and yield obtained in a asymmetric epoxidation process of allyl alcohol with a chiral titanium-tartrate complex as catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号