首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode (GCE). The electron mediator carboxyferrocene was also immobilized on the surface of the GCE. UV?Cvis spectra, Fourier transform IR spectra, scanning electron microscopy, and electrochemical impedance spectra were acquired to characterize the biosensor. The experimental conditions were studied and optimized. The biosensor responds linearly to H2O2 in the range from 1.0?×?10?5 to 2.0?×?10?3?M and with a detection limit of 2.0?×?10?6?M (at S/N?=?3).
Figure
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode.  相似文献   

3.
Gold nanochains were prepared by the assembly of citrate-stabilized gold nanospheres induced by cationic conjugated polymers. This assembly method was rapid, and the assembled product was very stable. A longitudinal plasmon resonance band was formed as a result of the coupling of gold nanoparticles and can be tuned from visible to near-infrared by adjusting the polymer/Au molar ratio. The gold nanochains were used as a SERS substrate and gave an enhancement factor of 8.4 x 10 (9), which is approximately 400 times larger than that on the isolated gold nanosphere substrate. The giant SERS enhancement is ascribed to the large electromagnetic fields of coupled gold nanoparticles.  相似文献   

4.
Journal of Solid State Electrochemistry - The method of synthesis of polyaniline, as an important conductive polymer, and the conjugated metal nanomaterials applied in the polymer, determines the...  相似文献   

5.
A direct electrochemical biosensing platform has been fabricated by covalent incorporation of carbon nanotubes (CNT) and gold nanoparticles (GNP) onto the poly(thionine) (PTH) film deposited by electropolymerization. With the synergic effects of the composite nanomaterials together with the excellent mediating redox polymer, the proposed platform could allow for faster electron transfer and higher enzyme immobilization efficiency than the platforms designed by using CNT or GNP alone. Comparison studies indicated that the as-developed H(2)O(2) sensor could show greatly improved performances of amperometric responses.  相似文献   

6.
A novel and simple biosensor based on poly(indoleacetic acid) film-modified electrode (PIAA/CPE) was fabricated by electrochemical polymerization of indoleacetic acid on a carbon paste electrode (CPE) through cyclic voltammetry. The resulting electrode was characterized by scanning electron microscopy, and the electrochemical behaviors of dopamine (DA) and epinephrine (EP) at the electrode were studied. It was illustrated that PIAA/CPE had excellent electrochemical catalytic activities toward DA and EP. The anodic peak currents (I pa) were dramatically enhanced by about seven-fold for DA and ten times for EP at PIAA/CPE. Thus, the determinations of DA and EP were carried out using PIAA/CPE successfully. The linear responses were obtained in the range of 3.0?×?10?7~7.0?×?10?4 and 1.0?×?10?6 ~8.0?×?10?4 mol L?1 with the detection limits (3σ) of 1?×?10?7 and 4?×?10?7 mol L?1 corresponding with DA and EP, respectively. Moreover, the cathodic peaks of DA and EP were well-separated with a potential difference about 325 mV in pH 5.3 phosphate-buffered saline, so simultaneous determination of DA and EP was carried out in this paper. Additionally, the interference studies showed that the PIAA/CPE exhibited excellent selectivity in the presence of ascorbic acid (AA). With good selectivity and sensitivity, the present method has been successfully applied to the determination of DA and EP in pharmaceutical samples.  相似文献   

7.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

8.
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.  相似文献   

9.
We have fabricated, in a single step, carbon ceramic electrodes modified with a poly(acridine orange) film containing reduced graphene oxide. They display electrocatalytic activity to ascorbic acid (AA) and uric acid (UA) at pH 4.5. The anodic peak potentials of AA and UA are separated by 276 mV so that they can be well resolved in cyclic voltammetry. UA and AA were simultaneously determined in a mixture at working potentials of 170 and 400 mV, respectively. Under optimized conditions, the calibration curves for AA and UA cover the 0.8–5,000 μM and 0.6–900 μM concentration range, respectively, while detection limits are 0.3 μM and 0.2 μM. The electrode was applied to determine AA and UA in urine samples.
Figure
DPV curves of RGO–PAO/CCE in the phosphate buffer solution (pH 4.5) containing 5.0?×?10?5 mol L?1 AA with different concentration of UA (a?→?f: 0, 1, 3, 5, 7, 9?×?10?6 mol L?1)  相似文献   

10.
We reported a general facile approach for modifying NPs and incorporating them into PVC polymer via ultrasonic irradiation. ZnO nanoparticles (NP)s modified with ascorbic acid (AS) and citric acid (CA) were employed to investigate the agglomeration behavior under poly(vinyl chloride) PVC matrix. To compare and determine the suitable construction, the prepared PVC/ZnO-CA-AS NCs (4, 8, 12?wt%) were characterized. UV-visible measurements indicate, increasing absorption value results in an increase of ZnO content. According to the obtained information from the TGA of the NCs, further increases in modified ZnO results in an increase in flame-retardancy. The mechanical properties investigation revealed improvement of the elongation at maximum stress.  相似文献   

11.
A silver hexacyanoferrate nanoparticles/carbon nanotubes modified glassy carbon electrode was fabricated and then successfully used for the simultaneous determination of ascorbic acid, dopamine and uric acid by cyclic voltammetry. A detailed investigation by transmission electron microscopy (TEM) and electrochemistry was performed in order to elucidate the preparation process and properties of the nanocomposites. The size of silver hexacyanoferrate nanoparticles was examined by TEM around 27 nm. Linear calibration plots were obtained over the range of 4.0 × 10−6-7.8 × 10−5, 2.4 × 10−6-1.3 × 10−4 and 2.0 × 10−6-1.5 × 10−4 mol L−1 with detection limits of 4.2 × 10−7,1.4 × 10−7 and 6.0 × 10−8 mol L−1 for ascorbic acid, dopamine and uric acid, respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of ascorbic acid, dopamine and uric acid in urine and human blood serum samples.  相似文献   

12.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   

13.
Acrylic acid was first electropolymerized on the surface of a gold electrode. Then, polyaniline (PANI) was electrodeposited on the poly(acrylic acid) (PAA) network to give a PANI–PAA composite film. Scanning electron microscopy and electrochemical studies confirmed the formation of PANI–PAA composite which exhibited excellent electroactivity over a wide pH range. The electro-oxidation of ascorbic acid (AA) was studied in detail. The modified electrode exhibits significantly reduced oxidation overpotential. The response towards AA is linear in the range 1.0 μM to 9.3 mM (R?=?0.9997, n?=?33) at a potential of 0.1 V (vs. SCE). The sensitivity is 207 μA mM-1 cm-2, and the detection limit is 1.0 μM (S/N?=?3). Interferences by uric acid and dopamine are negligible. The electrode thus enables sensitive and selective determination of AA, with a performance superior to many other PANI–based ascorbate sensors.  相似文献   

14.
Po Wang  Xue Huang 《Talanta》2007,73(3):431-437
A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100 nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.  相似文献   

15.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

16.
电化学聚合法制备聚中性红膜修饰电极及其应用   总被引:8,自引:0,他引:8  
以正交试验法研究了影响电聚合中性红制备膜修饰电极的具体条件 ,通过较少次数的试验得到了最佳条件 ,并依此制得了聚中性红膜修饰电极。用抗坏血酸对其电化学性能进行了表征 ,该修饰电极对抗坏血酸有较强的催化氧化作用 ,氧化电流与抗坏血酸的浓度在 1 .0× 1 0 - 5mol/L~ 2 .5× 1 0 - 2 mol/L之间呈线性关系 ,相关系数r=0 .9994,氧化电位为 3 3 0mV ,比裸玻碳电极负移 2 3 0mV左右 ,而且电极重现性良好。  相似文献   

17.
Wet poly(vinyl chloride) (wPVC) coated glassy carbon (GC) electrode was prepared by casting a DMF solution of poly(vinyl chloride) on glassy carbon and immersing it in methanol, and then in water. The wPVC coated GC (wPVC/GC) electrode showed electrochemical activity in aqueous solution; therefore, it was possible to obtain a wPVC/polypyrolle (PPy) composite by electropolymerization from aqueous solution of pyrolle (Py) into the wPVC matrix on the electrode. PPy segregated in wPVC matrix and the mechanical properties of PPy was improved by forming a composite without changing the electrochemical properties of PPy. The PPy/wPVC ratio can be controlled by controlling the concentration of PVC in DMF solution.  相似文献   

18.
Nonspherical polymer particles have attracted increasing attention recently. In this paper, micron-scale hemispherical polyimide (PI) particles were fabricated using water-soluble poly(amic acid) ammonium salts (PAAS) by a novel inverse emulsion technique. In the process, liquid paraffin was used as a continuous phase, the mixed solution of PAAS and water as a dispersed phase and sorbitan monooleate (Span80) as a surfactant. The research suggested that water as a stabilizing agent played an important role in forming stable emulsion. As the amount of water increased, stability of the emulsion increased gradually and morphology of PI particles transformed from sphere to ellipsoid, and finally to hemisphere. The concentration of PAAS solution and Span80 both affected the shape of particles, which changed from spherical to hemispherical by increasing the PAAS/Span80 concentration. The mechanism of forming hemispherical PI particles was discussed based on interfacial tension and interfacial free energy changes. Via adjusting the composition of the system to change the corresponding interfacial tension, we could get the particles with different morphologies. Furthermore, the change in structure characterized by FT-IR spectroscopy demonstrated that PAAS had been converted to PI after adding the dehydrating agent to the emulsion. And TGA results showed that the obtained PI particles had excellent thermal stability.  相似文献   

19.
We have studied the fluorescence properties and diffusion behaviors of gold nanoparticles (GNPs) in solution by using fluorescence correlation spectroscopy (FCS) at single molecule level. The GNPs display a high photo-saturation feature. Under illumination with strong laser light, they display higher brightness per particle (BPP) despite their low quantum yields. Based on the unique fluorescence properties and diffusion behaviors of GNPs, we have developed a sensitive and homogenous thrombin assay. It is based on a sandwich strategy and is making use of GNPs to which two different aptamers are conjugated. When the differently aptamer-labeled GNPs are mixed with solutions containing thrombin, the affinity reaction causes the GNPs to form dimers or oligomers. This leads to an increase in the diffusion time of the GNPs in the detection volume that is seen in FCS. The FCS method enables sensitive detection of the change in the characteristic diffusion time of the GNPs before and after the affinity reaction. Quantitative analysis of thrombin is based on the measurement of the change in the diffusion time. Under optimal conditions, the calibration plot is linear in the 0.5 nM to 110 nM thrombin concentration range, and the detection limit is 0.5 nM. The method was successfully applied to the direct determination of thrombin in human plasma.
Figure
On the basis of fluorescence correlation spectroscopy and recognition of aptamers, a new, sensitive and homogenous method for determination of thrombin in human plasma was developed using gold nanoparticles.  相似文献   

20.
A highly sensitive sensor based on Ni nanoparticles/poly (1,2-diaminoanthraquinone) modified electrode was fabricated at glassy carbon (GC) electrode (Ni/PDAAQ@GC ME) using cyclic voltammetry technique. The incorporation of nickel (II) ions nanoparticles (Ni NPs) followed by anodic polarization process was achieved. Surface morphologies of both PDAAQ@GC ME and Ni/PDAAQ@GC MEs were studied by scanning electron microscope. Ni/PDAAQ@GC ME was tested for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) by square wave voltammetry technique. The ME showed excellent electrocatalytic activity toward electrooxidation of these biomolecules in their single, binary and ternary systems in alkaline 0.1 M NaOH solutions. Experiment revealed that the low detection limits (LOD) for AA, DA and UA were 0.11, 0.072 and 1.2 µM in single system, respectively, and 0.069, 0.29 and 0.12 µM in ternary system, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号