首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a sensitive assay for enteropathogenic E. coli (EPEC) by integrating DNA extraction, specific polymerase chain reaction (PCR) and DNA detection using an electrode modified with the bundle-forming pilus (bfpA) structural gene. The PCR amplified products are captured on the electrode and hybridized with biotinylated detection probes to form a sandwich hybrid containing two biotinylated detection probes. The sandwich hybridization structure significantly combined the numerous streptavidin alkaline phosphatase on the electrode by biotin-streptavidin connectors. Electrochemical readout is based on dual signal amplification by both the sandwich hybridization structure and the enzyme. The electrode can satisfactorily discriminate complementary and mismatched oligonucleotides. Under optimal conditions, synthetic target DNA can be detected in the 1 pM to 10 nM concentration range, with a detection limit of 0.3 pM. EPEC can be quantified in the 10 to 107 CFU mL?1 levels within 3.5 h. The method also is believed to present a powerful platform for the screening of pathogenic microorganisms in clinical diagnostics, food safety and environmental monitoring.
An electrochemical DNA sensor was first designed to detect a bfpA gene specifically related to the EPEC.  相似文献   

2.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.
Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE  相似文献   

3.
Carbon/1-octadecanethiol-carboxylated multiwalled carbon nanotubes (cMWCNT) composite was used to construct a DNA sensor for detection of human bacterial meningitis caused by Neisseria meningitidis. The carbon composite electrode was used to covalently immobilize 5′-amine-labeled 19-mer single-stranded DNA (ssDNA) probe, which was hybridized with 1.35?×?102–3.44?×?104 pM (0.5–128 ng/5 μl) of single-stranded genomic DNA (ssG-DNA) of N. meningitidis for 10 min at room temperature (RT). The surface topography of the DNA sensor was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) while electrochemically characterized by electrochemical impedance. The immobilization of ssDNA probe and hybridization with ssG-DNA were detected electrochemically by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at RT in 30 min with a response time of 1 min. The DNA sensor showed high pathogenic specificity and can distinguish among complement, noncomplement, one base mismatch, and triple base mismatch oligomer targets. The limit of detection (LOD) and sensitivity of the sensor were approximately 68 pM and 38.095 (μA/cm2)/nM of ssG-DNA, respectively, using DPV. The improved sensitivity and LOD of the sensor can be attributed to the higher efficiency of probe immobilization due to high surface area-to-volume ratio and good electrical activity of cMWCNT. Figure
?  相似文献   

4.
A novel CuS–graphene (CuS-Gr) composite was synthesized to achieve excellent electrochemical properties for application as a DNA electrochemical biosensor. CuS-Gr composite was prepared by a hydrothermal method, in which two-dimensional graphene served as a two-dimensional conductive skeleton to support CuS nanoparticles. A sensitive electrochemical DNA biosensor was fabricated by immobilizing single-stranded DNA (ss-DNA) labeled at the 5′ end using 6-mercapto-1-hexane (HS-ssDNA) on the surface of Au nanoparticles (AuNPs) to form ssDNA-S–AuNPs/CuS-Gr, and hybridization sensing was done in phosphate buffer. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the modified electrodes. Differential pulse voltammetry was applied to monitor the DNA hybridization using an [Fe(CN)6]3?/4? solution as a probe. Under optimum conditions, the biosensor developed exhibited a good linear relationship between the current and the logarithm of the target DNA concentration ranging from 0.001 to 1 nM, with a low detection limit of 0.1 pM (3σ/S). The biosensor exhibited high selectivity to differentiate one-base-mismatched DNA and three-base-mismatched DNA. The results indicated that the sensing platform based on CuS-Gr provides a stable and conductive interface for electrochemical detection of DNA hybridization, and could easily be extended to the detection of other nucleic acids. Graphical abstracts
?  相似文献   

5.
An electrochemical DNA biosensor was developed that is based on a gold electrode modified with a nanocomposite membrane made from an ionic liquid, ZnO nanoparticles and chitosan. A single-stranded DNA probe was immobilized on this electrode. Acridine orange was used as the hybridization probe for monitoring the hybridization of the target DNA. The biosensor was capable of detecting target DNA in the concentration range from 1.0?×?10?C14 to 1.8?×?10?C4?mol?L-1, with a detection limit of 1.0?×?10?C15?mol?L-1. The approach towards constructing a DNA biosensor allows studies on the hybridization even with crude DNA fragments and also to analyze sample obtained from real samples. The results show that the DNA biosensor has the potential for sensitive detection of a specific sequence of the Trichoderma harzianum gene and provides a quick, sensitive and convenient method for the study of microorganisms.
Figure
Suggested interaction mechanism of modified electrode (IL/ZnO/CHIT/AuE) between immobilization and hybridization  相似文献   

6.
We have developed a highly sensitive and selective sensor for lead(II) ions. A glassy carbon electrode was modified with Fe3O4 nanospheres and multi-walled carbon nanotubes, and this material was characterized by scanning electron microscopy and X-ray diffraction. The electrode displays good electrochemical activity toward Pb(II) and gives anodic and cathodic peaks with potentials at ?496 mV and ?638 mV (vs. Ag/AgCl) in pH?6.0 solution. The sensor exhibits a sensitive and fairly selective response to Pb(II) ion, with a linear range between 20 pM and 1.6 nM, and a detection limit as low as 6.0 pM (at a signal-to noise ratio of 3). The sensor was successfully applied to monitor Pb(II) in spiked water samples.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by modifying Fe3O4 nanospheres and multi-walled carbon nanotubes onto the pretreated glassy carbon electrode. The electrode displays good electrochemical activity toward Pb(II). And a low detection limit of 6.0 pM, high sensitivity, good reproducibility and stability provide the Fe3O4/MWCNTs/GCE a definite candidate for monitoring lead ion in real samples.  相似文献   

7.
We report on a novel electrochemical method for the sensitive determination of trace zirconium (Zr) at a glassy carbon electrode modified with a film of acetylene black containing dihexadecyl hydrogen phosphate and in the presence of alizarin violet (AV). The method is based on the preconcentration of the Zr(IV)-AV complex at a potential of ?200?mV (vs. SCE). The adsorbed complex is then oxidized, producing a response with a peak potential of 526?mV. Compared to the poor electrochemical signal at the unmodified GCE, the electrochemical response of Zr(IV)-AV complex is greatly improved, as confirmed by the significant increase in peak current. The effects of experimental conditions on the oxidation current were studied and a calibration plot established. The oxidation current is linearly related to the Zr(IV) concentration in the 8.0?pM to 10?nM concentration range (cAV?=?0.2???M) and 10?nM ~0.6???M (cAV?=?2.0???M), and the detection limit (S/N?=?3) is as low as 4.0?pM for a 3-min accumulation time. The method was successfully employed to the determination of zirconium in standard ore samples.
Figure
A glassy carbon electrode modified with acetylene black-dihexadecyl hydrogen phosphate composite film was used as a novel voltammetric sensor for zirconium(Zr) determination. The stripping peak current at 526?mV exhibits good linearity with concentration of Zr in the range of 8.0?pM to to 0.6???M.  相似文献   

8.
We have synthesized water-dispersible CdTe quantum dots (QDs) capped with thioglycolic acid. Their quantum yield is higher than 54%. A sensitive electrochemiluminescence (ECL) method was established based on the modification of the composite of the QDs, carbon nanotubes and chitosan on indium tin oxide glass. The sensor displays efficient and stable anodic ECL which is quenched by dopamine. A respective sensor was designed that responds to dopamine linearly in the range of 50?pM to 10?nM, and the detection limit is 24?pM. Dopamine was determined with this sensor in spiked cerebro-spinal fluid with average recoveries of 95.7%.
Figure
The CdTe quantum dots have been synthesized and therefore developed an electrochemiluminescent sensor based on immobilizing its composite with carbon nanotubes and chitosan on indium tin oxide glass. The sensor responded toward dopamine linearly in the range of 50?pM to 10?nM with a detection limit of 24?pM.  相似文献   

9.
10.
Deoxyribonucleic acid (DNA) was electrochemically deposited on a carbon ionic liquid electrode to give a biosensor with excellent redox activity towards paraquat as shown by cyclic voltammetry and differential pulse voltammetry. Experimental conditions were optimized with respect to sensing paraquat by varying the electrochemical parameters, solution pH, and accumulation time of DNA. Under the optimized conditions, a linear relation exists between the reduction peak current and the concentration of paraquat in the range from 5?×?10?8 mol L?1 to 7?×?10?5 mol L?1, with a detection limit of 3.6?×?10?9 mol L?1. The utility of the method is illustrated by successful analysis of paraquat in spiked real water samples.
Figure
The DNA was electrodeposited onto the CILE under +1.5?V for 1200?s. The electrochemical behaviors of paraquat on the modified electrode had been studied by cyclic voltammetry and differential pulse voltammetry. Five ml phosphate buffer (pH 7.0) solution was added into an electrochemical cell (10?ml) and then paraquat was successfully added into the cell. The differential pulse voltammograms were recorded when swept from ?0.8?V to ?0.3?V. The peak currents at about ?0.63?V for paraquat were measured.  相似文献   

11.
We have performed a comparative study on four protocols for the immobilization of the thrombin aptamer on a graphite-epoxy composite electrode with the aim to identify the most practical method for designing the corresponding impedimetric aptasensor. The protocols included (a) physical adsorption, (b) avidin-biotin affinity interaction, (c) electrochemical activation and covalent bonding via amide groups, and (d) electrochemical grafting using 4-carboxybenzenediazonium coupling. The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the (ferri/ferro)hexacyanide redox couple. An increase in the interfacial charge transfer resistance (Rct) was noted in all cases after the aptamer-thrombin interaction had occurred. The selectivity of the aptasensor over common serum proteins was also systematically investigated. Physical adsorption resulted in the lowest detection limit of the probe (4.5 pM), while avidin-biotin interaction resulted in highest selectivity and reproducibility exhibiting a 4.9 % relative standard deviation at pM thrombin concentration levels.
Figure
The study and comparison of four protocols for the immobilization of a DNA aptamer is reported to detect thrombin onto a graphite-epoxy composite electrode and with use of Electrochemical Impedance spectroscopy as the detection technique.  相似文献   

12.
We report on the fabrication of an enzyme–free electrochemical sensor for glucose based on a printed film consisting of multi–walled carbon nanotubes (MWCNTs). The MWCNT–based film can be produced by means of a flexographic printing process on a polycarbonate (PC) substrate. The electrochemical response of the MWCNT–based film (referred to as MWCNT–PC) towards the oxidation of glucose at pH 7 was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. The MWCNT–PC film exhibits substantial electrocatalytic activity towards the oxidation of glucose at an anodic potential of 0.30?V (vs. Ag/AgCl). The findings reveal that the MWCNT–PC film enables non–enzymatic sensing of glucose with a detection limit as low as 2.16?μM and a sensitivity of 1045?μA?mM?1?cm?2.
Figure
Enzyme–free electrochemical sensor for glucose consisting of multi–walled carbon nanotubes was fabricated by means of flexographic printing process on polycarbonate substrate. The sensor exhibits electrocatalytic activity for glucose oxidation at an anodic potential of 0.30?V (vs. Ag/AgCl) with detection limit of 2.16?μM and sensitivity of 1045?μA?mM?1?cm?2.  相似文献   

13.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

14.
We report on a novel biosensor for determining sequence-specific DNA. It is based on resonance light scattering (RLS) caused by the aggregation of gold bipyramids. These display localized surface plasmon resonance and can be used as a bioprobe. The absorption spectra and the transmission electron micrographs provide visual evidence of the aggregation of the gold bipyramids in the presence of DNA. The RLS intensity of the gold bipyramids increases with the concentration of the target DNA. The method was successfully applied to the determination of a 30-mer single-stranded oligonucleotide and works over the 0.1–10?nM concentration range.
Figure
The electrostatic interaction between the ssDNA and gold bipyramids was the driving force to form gold bipyramid-ssDNA complex. After the target DNA added into the gold bipyramid-ssDNA complex suspension, the hybridization between the target DNA and probe ssDNA happened, which caused the aggregation of gold bipyramids.  相似文献   

15.
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The other end of the probe DNA is linked, via carboxy groups, to magnetic nanoparticles. The binding of target DNA transforms the hairpin structure of the probe DNA and causes the exposure of ester bonds. This results in the release of electro-active ferrocene after hydrolysis of the ester bonds, and in an observable electrochemical response. The quantity of target DNA in the concentration range between 1?×?10?12 mol·L?1 and 1?×?10?8 mol·L?1 can be determined by measuring the electrochemical current. The method can detect target DNA with rapid response (30 min) and low interference.
Figure
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The method can detect target DNA with rapid response (30 min) and low interference.  相似文献   

16.
An enzyme-linked immunosorbent assay, a horseradish peroxidase-catalyzed fluorogenic reaction, and chemiluminescence (CL) analysis have been combined to develop a sandwich ELISA for Staphylococcal enterotoxin B (SEB) using monoclonal antibodies for different epitopes of SEB. The enzyme catalyzed reaction of 3-(4-hydroxyphenyl propionate) with the urea complex of hydrogen peroxide produced a fluorescent dimer which was detected by chemiluminescence analysis. The CL response to SEB is linear in the range from 6.0 to 564?pg?mL?1 (r?=?0.9993), and the detection limit is 3.3?pg?mL?1 (S/N?=?3). Intra- and interassay coefficients of variation are <7.0% at three concentrations (24, 96 and 384?pg?mL?1). The method was applied to the analysis of SEB in serum, lake water and milk samples. The results compared well with those obtained by conventional ELISAs.
Figure
Procedures of the proposed method. A sandwich ELISA for Staphylococcal enterotoxin B (SEB) using a pair of monoclonal antibodies that recognizes different epitopes of SEB. After the ELISA procedure, PHPPA is reacted with Hydrogen peroxide-urea, with catalysis by HRP-conjugated anti-SEB, to produce PHPPA fluorescent Dimer, which is detected by TCPO chemiluminescence.  相似文献   

17.
A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550?mV in linear sweep voltammograms at pH?7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10?nM to 104?nM, the correlation coefficient being 0.9983, and the detection limit (S/N?=?3) being 5.0?nM. The method was successfully applied to the determination of BPA in food package.
Figure
A new electrochemical method was developed for the determination of bisphenol A based on carboxylated multi-walled carbon nanotubes modified electrode.  相似文献   

18.
We describe a sensitive sandwich immunoassay for alpha-fetoprotein (AFP). It is making use of gold nanoparticles (GNPs) and magnetic beads (MBs) as labels, and of resonance Rayleigh scattering for detection. Two antibodies were labeled with GNPs and MBs, respectively, and MB-antigen-GNP complexes were formed in the presence of antigens. The MB labels also serve as solid phase carriers that can be used to magnetically separate the immuno complex. The GNP labels are used as optical probes, and Rayleigh scattering was used to determine the concentration of free GNPs-antibody after separation of the MB-antigen-GNP complexes. The concentration of AFP is related to the intensity of light scattered by free GNPs in the 13.6 pM to 436 pM concentration range, and the limit of detection is 13.6 pM. The method was applied to the determination of AFP in sera of cancer patients, and the results agree well with those obtained by conventional ELISA.
Figure
A sensitive sandwich immunoassay for alpha-fetoprotein (AFP) was reported in this paper. It was based on high resonance Rayleigh scattering light of gold nanoparticles (GNPs) and rapid separation of magnetic beads (MBs). Rayleigh scattering intensity of free GNPs was reduced strongly after immunoassay. Under optimized conditions, we got good relationship between resonance Rayleigh scattering (RRS) of free GNPs and the AFP concentration to determine AFP concentration efficiently.  相似文献   

19.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

20.
We report on a highly sensitive and selective electrochemiluminescence (ECL) based method for the determination of pentachlorophenol (PCP). It is based on a new hybrid material composed of CdS quantum dots (QDs), graphene, and carbon nanotubes (CNTs), and uses peroxodisulfate as the coreactant. The use of this system results in a nearly 18-fold increase in ECL intensity. On interaction between PCP and the QDs, a decrease in ECL intensity is observed at PCP in a concentration as low as 1.0 pM and over a wide linear range (from 1.0 pM to 1.0 nM). The method is hardly affected by other chlorophenols and nitrophenols, and the electrode can be recycled.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号