首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

2.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

3.
Пустьl 1 иl 2 — неотрицательные убывающие функции на (0, ∞). Допустим, что $$\int\limits_0^\infty {S^{n_i - 1} l_i (S)\left( {1 + \log + \frac{1}{{S^{n_i } l_i (S)}}} \right)dS}< \infty ,$$ , гдеn 1 иn 2 — натуральные числа. Тогда для каждой функции \(f \in L^1 (R^{n_1 + n_2 } )\) при почти всех (x0, у0) мы имеем $$\mathop {\lim }\limits_{\lambda \to \infty } \lambda ^{n_1 + n_2 } \int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_1 } } (\lambda |x|)l_2 (\lambda |y|)f(x_0 - x,y_0 - y)dx dy = f(x_0 ,y_0 )\int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_i (|x|)l_2 } } (|y|)dx dy.$$   相似文献   

4.
Let A(G) be the adjacency matrix of G. The characteristic polynomial of the adjacency matrix A is called the characteristic polynomial of the graph G and is denoted by φ(G, λ) or simply φ(G). The spectrum of G consists of the roots (together with their multiplicities) λ 1(G) ? λ 2(G) ? … ? λ n (G) of the equation φ(G, λ) = 0. The largest root λ 1(G) is referred to as the spectral radius of G. A ?-shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by G(l 1, l 2, … l 7) (l 1 ? 0, l i ? 1, i = 2, 3, …, 7) a ?-shape tree such that $G\left( {l_1 ,l_2 , \ldots l_7 } \right) - u - v = P_{l_1 } \cup P_{l_2 } \cup \ldots P_{l_7 }$ , where u and v are the vertices of degree 4. In this paper we prove that ${{3\sqrt 2 } \mathord{\left/ {\vphantom {{3\sqrt 2 } 2}} \right. \kern-0em} 2} < \lambda _1 \left( {G\left( {l_1 ,l_2 , \ldots l_7 } \right)} \right) < {5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}$ .  相似文献   

5.
A partial orthomorphism of ${\mathbb{Z}_{n}}$ is an injective map ${\sigma : S \rightarrow \mathbb{Z}_{n}}$ such that ${S \subseteq \mathbb{Z}_{n}}$ and ??(i)?Ci ? ??(j)? j (mod n) for distinct ${i, j \in S}$ . We say ?? has deficit d if ${|S| = n - d}$ . Let ??(n, d) be the number of partial orthomorphisms of ${\mathbb{Z}_{n}}$ of deficit d. Let ??(n, d) be the number of partial orthomorphisms ?? of ${\mathbb{Z}_n}$ of deficit d such that ??(i) ? {0, i} for all ${i \in S}$ . Then ??(n, d) =???(n, d)n 2/d 2 when ${1\,\leqslant\,d < n}$ . Let R k, n be the number of reduced k ×?n Latin rectangles. We show that $$R_{k, n} \equiv \chi (p, n - p)\frac{(n - p)!(n - p - 1)!^{2}}{(n - k)!}R_{k-p,\,n-p}\,\,\,\,(\rm {mod}\,p)$$ when p is a prime and ${n\,\geqslant\,k\,\geqslant\,p + 1}$ . In particular, this enables us to calculate some previously unknown congruences for R n, n . We also develop techniques for computing ??(n, d) exactly. We show that for each a there exists??? a such that, on each congruence class modulo??? a , ??(n, n-a) is determined by a polynomial of degree 2a in n. We give these polynomials for ${1\,\leqslant\,a\,\leqslant 6}$ , and find an asymptotic formula for ??(n, n-a) as n ?? ??, for arbitrary fixed a.  相似文献   

6.
Let ${\|\cdot\|_{\psi}}$ be the absolute norm on ${\mathbb{R}^2}$ corresponding to a convex function ${\psi}$ on [0, 1] and ${C_{\text{NJ}}(\|\cdot\|_{\psi})}$ its von Neumann–Jordan constant. It is known that ${\max \{M_1^2, M_2^2\} \leq C_{\text{NJ}}(\| \cdot \|_{\psi}) \leq M_1^2 M_2^2}$ , where ${M_1 = \max_{0 \leq t \leq 1} \psi(t)/ \psi_2(t)}$ , ${M_2 = \max_{0\leq t \leq 1} \psi_2(t)/ \psi(t)}$ and ${\psi_2}$ is the corresponding function to the ? 2-norm. In this paper, we shall present a necessary and sufficient condition for the above right side inequality to attain equality. A corollary, which is valid for the complex case, will cover a couple of previous results. Similar results for the James constant will be presented.  相似文献   

7.
We throw i.i.d. random squares S 1,S 2,… with respective side lengths l 1,l 2,… uniformly on the two-dimensional torus ?/?×?/?, where $\{l_{n}\}_{n=1}^{\infty}$ is a nonincreasing sequence with 0<l n <1 and lim n→∞ l n =0. A necessary and sufficient condition for covering the connected curve {0}×?/? is $$\sum_{n=1}^{\infty}\frac{l_n}{(\sum_{i=1}^{n}l_i)^2}\exp{\Biggl(\sum _{i=1}^{n}l_i^2\Biggr)}=\infty.$$   相似文献   

8.
9.
We investigate the geometry of π 1-injective surfaces in closed hyperbolic 3-manifolds. First we prove that for any ${\epsilon > 0}$ , if the manifold M has sufficiently large systole sys1(M), the genus of any such surface in M is bounded below by ${{\rm exp}((\frac{1}{2} - \epsilon){\rm sys}_1(M))}$ . Using this result we show, in particular, that for congruence covers M i M of a compact arithmetic hyperbolic 3-manifold we have: (a) the minimal genus of π 1-injective surfaces satisfies ${{\rm log} \, {\rm sysg}(M_i) \gtrsim \frac{1}{3} {\rm log} \, {\rm vol}(M_i) ; (b)}$ there exist such sequences with the ratio Heegard ${{\rm genus}(M_i)/{\rm sysg}(M_i) \gtrsim {\rm vol}(M_i)^{1/2}}$ ; and (c) under some additional assumptions π 1(M i ) is k-free with ${{\rm log} \, k \gtrsim \frac{1}{3}{\rm sys}_1(M_i)}$ . The latter resolves a special case of a conjecture of Gromov.  相似文献   

10.
Let α 1, α 2, α 3, β 1, β 2, β 3 be real numbers with α 1, α 2, α 3 >1. Suppose that each individual α i is of a finite type and that at least one pair $\alpha_{i}^{-1}$ , $\alpha_{j}^{-1}$ is also of a finite type. In this paper we prove that every large odd integer n can be represented as $$n=p_{1}+p_{2}+p_{3}, $$ with p i =n/3+O(n 2/3(logn) c ) and $p_{i}\in\mathcal{B}_{i}$ , where c>0 is an absolute constant and $\mathcal{B}_{i}$ denotes the so-called Beatty sequence, i.e. $$\mathcal{B}_{i}=\bigl\{n\in\mathbb{N}: n=[\alpha_{i}m+ \beta_{i}] \mbox { for some } m\in\mathbb{Z}\bigr\}. $$   相似文献   

11.
Let M n (n ? 3) be a complete Riemannian manifold with sec M ? 1, and let \(M_i^{n_i }\) (i = 1, 2) be two complete totally geodesic submanifolds in M. We prove that if n1 + n2 = n ? 2 and if the distance |M1M2| ? π/2, then M i is isometric to \(\mathbb{S}^{n_i } /\mathbb{Z}_h\), \(\mathbb{C}P^{n_i /2}\), or \(\mathbb{C}P^{n_i /2} /\mathbb{Z}_2 \) with the canonical metric when n i > 0; and thus, M is isometric to S n /? h , ?Pn/2, or ?Pn/2/?2 except possibly when n = 3 and \(M_1 (or M_2 )\mathop \cong \limits^{iso} \mathbb{S}^1 /\mathbb{Z}_h \) with h ? 2 or n = 4 and \(M_1 (or M_2 )\mathop \cong \limits^{iso} \mathbb{R}P^2 \).  相似文献   

12.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

13.
A bounded linear operator A acting on a Banach space X is said to be an upper triangular block operators of order n, and we write ${A \in \mathcal{UT}_{n}(X)}$ , if there exists a decomposition of ${X = X_{1} \oplus . . . \oplus X_{n}}$ and an n × n matrix operator ${(A_{i,j})_{\rm 1 \leq i, j \leq n}}$ such that ${A = (A_{i, j})_{1 \leq i, j \leq n}, A_{i, j} = 0}$ for i > j. In this note we characterize a large set of entries A i, j with j > i such that ${\sigma_{\rm D} (A) = {\bigcup\limits_{i = 1}^{n}} \sigma_{\rm D} (A_{i, i})}$ ; where σD(.) is the Drazin spectrum. Some applications concerning the Fredholm theory and meromorphic operators are given.  相似文献   

14.
It is shown that the tensor Banach functor of projective type \(\hat{T}_{K} \) [1] corresponding to the complete normed fieldK is quasiidempotent on infinite-dimensionall 1 spaces, i.e., $$\hat{T}_{K} (\theta _{K} (\hat{T}_{K} (l_1 (M.K)))) \cong \hat{T}_K (l_1 (M.K)).$$ whereM is an infinite set and θ K is the forgetful functor. Anl 1 realization of the Banach algebra \(\hat{T}_{K} (l_1 (M.K))\) is constructed.  相似文献   

15.
Let $ \mathbb{F} $ be a finite field of characteristic different from 2. We study the cardinality of sets of matrices with a given determinant or a given permanent for the set of Hermitian matrices $ {{\mathcal{H}}_n}\left( \mathbb{F} \right) $ and for the whole matrix space M n ( $ \mathbb{F} $ ). It is known that for n = 2, there are bijective linear maps Φ on $ {{\mathcal{H}}_n}\left( \mathbb{F} \right) $ and M n ( $ \mathbb{F} $ ) satisfying the condition per A = det Φ(A). As an application of the obtained results, we show that if n ≥ 3, then the situation is completely different and already for n = 3, there is no pair of maps (Φ, ?), where Φ is an arbitrary bijective map on matrices and ? : $ \mathbb{F} $ $ \mathbb{F} $ is an arbitrary map such that per A = ?(det Φ(A)) for all matrices A from the spaces $ {{\mathcal{H}}_n}\left( \mathbb{F} \right) $ and M n ( $ \mathbb{F} $ ), respectively. Moreover, for the space M n ( $ \mathbb{F} $ ), we show that such a pair of transformations does not exist also for an arbitrary n > 3 if the field $ \mathbb{F} $ contains sufficiently many elements (depending on n). Our results are illustrated by a number of examples.  相似文献   

16.
Let (X jk ) jk≥1 be i.i.d. nonnegative random variables with bounded density, mean m, and finite positive variance σ 2. Let M be the nn random Markov matrix with i.i.d. rows defined by ${M_{jk}=X_{jk}/(X_{j1}+\cdots+X_{jn})}$ . In particular, when X 11 follows an exponential law, the random matrix M belongs to the Dirichlet Markov Ensemble of random stochastic matrices. Let λ1, . . . , λ n be the eigenvalues of ${\sqrt{n}M}$ i.e. the roots in ${\mathbb{C}}$ of its characteristic polynomial. Our main result states that with probability one, the counting probability measure ${\frac{1}{n}\delta_{\lambda_1}+\cdots+\frac{1}{n}\delta_{\lambda_n}}$ converges weakly as n→∞ to the uniform law on the disk ${\{z\in\mathbb{C}:|z|\leq m^{-1}\sigma\}}$ . The bounded density assumption is purely technical and comes from the way we control the operator norm of the resolvent.  相似文献   

17.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

18.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

19.
For positive integers a and b, an ${(a, \overline{b})}$ -parking function of length n is a sequence (p 1, . . . , p n ) of nonnegative integers whose weakly increasing order q 1 ≤ . . . ≤ q n satisfies the condition q i  < a + (i ? 1)b. In this paper, we give a new proof of the enumeration formula for ${(a, \overline{b})}$ -parking functions by using of the cycle lemma for words, which leads to some enumerative results for the ${(a, \overline{b})}$ -parking functions with some restrictions such as symmetric property and periodic property. Based on a bijection between ${(a, \overline{b})}$ -parking functions and rooted forests, we enumerate combinatorially the ${(a, \overline{b})}$ -parking functions with identical initial terms and symmetric ${(a, \overline{b})}$ -parking functions with respect to the middle term. Moreover, we derive the critical group of a multigraph that is closely related to ${(a, \overline{b})}$ -parking functions.  相似文献   

20.
Given a strictly increasing sequence ${\Lambda = (\lambda_n)}$ of nonnegative real numbers, with ${\sum_{n=1}^\infty \frac{1}{\lambda_n}<\infty}$ , the Müntz spaces ${M_\Lambda^p}$ are defined as the closure in L p ([0, 1]) of the monomials ${x^{\lambda_n}}$ . We discuss how properties of the embedding ${M_\Lambda^2\subset L^2(\mu)}$ , where?μ is a finite positive Borel measure on the interval [0, 1], have immediate consequences for composition operators on ${M^2_\Lambda}$ . We give criteria for composition operators to be bounded, compact, or to belong to the Schatten–von Neumann ideals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号