首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo12-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo12-GR). PMo12-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo12-GR modified GCE through electrodeposition. The morphology of Cu/PMo12-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo12-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10−2 μM (S/N = 3). In addition, Cu/PMo12-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field.  相似文献   

2.

This review (with 110 refs.) gives an overview on the progress that has been made in the past few years on the use of gold nanoparticles (AuNPs) for use in sensors and analytical tools for the determination of dopamine (DA). Both AuNPs and their composites with other organic and inorganic materials including noble metals are treated. Following an overview on the clinical significance of DA, we discuss the various analytical methods that are (a) electrochemiluminescence (ECL); (b) surface enhanced Raman scattering (SERS); (c) colorimetric probing and visual detection; and (d) the large class of electrochemical sensors. Subsections cover sensors based on plain AuNPs, bimetallic NPs, AuNP-metal@metal oxide nanocomposites, AuNP nanocomposites with organic polymers, AuNP nanocomposites with carbon nanotubes or with graphene, and finally sensors based on ternary materials containing AuNPs. The review ends with a conclusion on current challenges of sensors for DA and an outlook on future trends.

We review the recent progress in sensing dopamine based on AuNPs and its nanocomposites including bimetallic nanoparticles, AuNPs-/metal oxide, AuNPs-polymer, AuNPs-carbon nanotubes, AuNPs-graphene and ternary materials using different types of sensing techniques such as electrochemiluminescence (ECL), colorimetric, surface enhanced Raman scattering (SERS) and electrochemical techniques.

  相似文献   

3.
4.
Po Wang  Xue Huang 《Talanta》2007,73(3):431-437
A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100 nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.  相似文献   

5.
多巴胺是哺乳动物中枢神经系统中的一种非常重要的信息传递物质,建立对多巴胺快速简单测定的分析方法非常重要。本文就05年以来聚合物修饰电极对多巴胺电化学检测的研究进展进行了综述。  相似文献   

6.
A simple preparation methodology able to stabilize gold nanoparticles and to obtain an electrode which detects ascorbic acid, uric acid, and dopamine by different techniques is presented. A 3-mercaptopropyl-functionalized silica network was synthesized using the sol–gel method. Gold nanoparticles (nAu) were immobilized on the material at synthesis by adding a sol of these previously prepared particles to the reaction mixture. The electrochemical behavior of the SiO2/MPTS/Au carbon paste electrode was studied using cyclic voltammetry in the presence of a hexacyanoferrate probe molecule. The presence of nAu in the functionalized silica network changes the electrochemical characteristics of the material, favoring the electron transfer process of this complex ion. The SiO2/MPTS/Au electrode was proven to be an efficient tool in the simultaneous determination of ascorbic acid (H2AA), dopamine (DA), and uric acid (UA) using square wave voltammetry techniques. With the nAu on the electrode, an increase in the peak current related to the redox process of the H2AA, DA, and UA was observed. The separations of the anodic peak potentials between DA/H2AA and UA/H2AA were 310 and 442?mV, respectively. The results obtained show that the SiO2/MPTS/Au electrode can be used in the simultaneous determination of H2AA, DA, and UA.  相似文献   

7.
血红蛋白在纳米金修饰电极上的电化学研究   总被引:2,自引:0,他引:2  
氧化还原蛋白在电极上的直接电化学研究不但能获得有关蛋白质和酶的热力学和动力学性质等重要信息,为开发新型生物传感器和生物反应器提供理论指导,而且对了解它们在生命体内的电子转移机理和生理作用机制具有重要意义。血红蛋白(Hb)是以血红素为辅基的蛋白质,在生物体中的主要  相似文献   

8.
9.
10.
Internal solution free ion-selective electrodes were prepared applying for the first time gold nanoparticles as a solid contact layer. The presence of a layer of gold nanoparticles stabilized with aliphatic thiols at the back side of the membrane resulted in highly stable potentiometric responses of the sensors, good selectivities and close to Nernstian slopes. Electrochemical studies have confirmed that the applied material is effectively working as capacitive solid contact, yielding high stability sensors.  相似文献   

11.
Electrochemical behavior of three antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and butylated hydroquinone (TBHQ), was investigated at a glassy carbon electrode modified with gold nanoparticles (AuNPs/GCE). This electrode was characterized by scanning electron microscopy (SEM). The experimental results indicated that the modified electrode was strongly electroactive during the redox reactions of BHA, BHT and TBHQ, and this was confirmed by the observed increased redox peak currents and shifted potentials; in addition, the oxidation products of BHA and TBHQ were found to be the same. The experimental conditions were optimized and the oxidation peaks of BHA and BHT were clearly separated. Based on this, an electrochemical method was researched and developed for the simultaneous determination of BHA, BHT and TBHQ in mixtures with the use of first derivative voltammetry; the linear concentration ranges were 0.10–1.50 μg mL−1, 0.20–2.20 μg mL−1 and 0.20–2.80 μg mL−1, and detection limits were 0.039, 0.080 and 0.079 μg mL−1, for BHA, BHT and TBHQ, respectively. The proposed method was successfully applied for the analysis of the three analytes in edible oil samples.  相似文献   

12.
Doping polyaniline with COO(-)-modified gold nanoparticles by forming stable layer-by-layer multilayer films can shift its electroactivity to neutral pH. The films can electrocatalyze the oxidation of NADH and offer potential applications in other fields, e.g., optoelectronics or biosensing.  相似文献   

13.
基于多壁碳纳米管和纳米金复合膜修饰电极制备了特殊序列的靶DNA的电化学生物传感器.该传感器以六氨基合钌为杂交指示剂,用差示脉冲伏安法进行检测DNA杂化,其响应信号与靶DNA浓度在1.0×10<'-12>~1.0×10<'-7>mol/L范围内呈线性关系,检测限达3.5×10<'-13>mol/L.该传感器能区分单碱基错配的靶DNA.  相似文献   

14.
The electrochemistry of glucose oxidase (GOx) immobilized on a graphite rod electrode modified by gold nanoparticles (Au-NPs) was studied. Two types of amperometric glucose sensors based on GOx immobilized and Au-NPs modified working electrode (Au-NPs/GOx/graphite and GOx/Au-NPs/graphite) were designed and tested in the presence and the absence of N-methylphenazonium methyl sulphate in different buffers. Results were compared to those obtained with similar electrodes not containing Au-NPs (GOx/graphite). This study shows that the application of Au-NPs increases the rate of mediated electron transfer. Major analytical characteristics of the amperometric biosensor based on GOx and 13 nm diameter Au-NPs were determined. The analytical signal was linearly related to glucose concentration in the range from 0.1 to 10 mmol L?1. The detection limit for glucose was found within 0.1 mmol L?1 and 0.08 mmol L?1 and the relative standard deviation in the range of 0.1–100 mol L?1 was 0.04–0.39%. The τ1/2 of V max characterizes the storage stability of sensors: this parameter for the developed GOx/graphite electrode was 49.3 days and for GOx/Au-NPs/graphite electrode was 19.5 days. The sensor might be suitable for determination of glucose in beverages and/or in food.  相似文献   

15.
16.
Li  Lu  Fan  Limei  Dai  Yunlong  Kan  Xianwen 《Mikrochimica acta》2015,182(15):2477-2483

A molecularly imprinted polymer (MIP) was prepared by self-polymerization of dopamine in the presence of bovine hemoglobin (BHb) and then deposited on the surface of an electrode modified with gold nanoparticles (AuNPs). Scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry were employed to characterize the modified electrode using the hexacyanoferrate redox system as an electroactive probe. The effects of BHb concentration, dopamine concentration, and polymerization time were optimized. Under optimized conditions, the modified electrode selectively recognizes BHb even in the presence of other proteins. The peak current for hexacyanoferrate, typically measured at + 0.17 V (vs. SCE), depends on the concentration of BHb in the 1.0 × 10−11 to 1.0 × 10−2 mg mL−1 range. Due to the ease of preparation and tight adherence of polydopamine to various support materials, the present strategy conceivably also provides a platform for the recognition and detection of other proteins.

Gold nanoparticles and molecularly imprinted self-polymerization dopamine were modified on gold electrode surface to recognize and determine bovine hemoglobin. Under the optimized conditions, the modified electrode showed specific adsorption, selective recognition, and sensitive detection of bovine hemoglobin.

  相似文献   

17.
建立了一种合成碳负载型金纳米颗粒(AuC)的新方法.将酵母菌、葡萄糖及HAuCl4溶液混合后置于恒温摇床中,在310K下振荡数天得到酵母菌吸附的金前体盐(AuY);将AuY在氮气气氛中1 273K下煅烧得到AuC.采用扫描电镜和透射电镜观察了AuC的形貌;将AuC修饰在玻碳电极上并用于多巴胺的电化学检测.结果表明,AuY培养3d后,其酵母菌颗粒粒径分布不均匀,这主要是由于大量葡萄糖的吸附和包裹以及酵母孢子的存在所致;而AuY培养6d后得到的金颗粒粒径分布均匀,粒径约为10nm.此外,AuC在多巴胺电化学检测中具有非常好的响应,且检出限较低,其电化学过程为混合动力学控制过程.  相似文献   

18.
Gold electrodes modified with monolayers with ionic end groups of different acidity and structure have been evaluated for the detection of dopamine. It has been demonstrated that the selectivity of monolayers depends not only on ionic charge but also on the nature of the ionic end group and defects in the monolayer. Catalytic effects due to the electrocatalytic oxidation of ascorbic acid by dopamine are present at the monolayer modified gold electrode. The angle resolved XPS (X-ray photoelectron spectroscopy) experiments demonstrate that the sulfonate group do not compete with thiol on binding the gold electrode. The capacitance measurements demonstrate that the capacitance depends on the length, end group type and defects present in monolayers.  相似文献   

19.
A flow-injection electrochemical immunoassay system based on a disposable immunosensor for the determination of interleukin-6 (IL-6) was proposed. The immunosensor was prepared by entrapping horseradish peroxidase (HRP)-labeled IL-6 antibody into gold nanoparticles-modified composite membrane at a screen-printed graphite electrode. With a non-competitive immunoassay format, the immunosensor was inserted in the flow system with an injection of sample, and the injected sample containing IL-6 antigen was produced transparent immunoaffinity reaction with the immobilized HRP-labeled IL-6 antibody. The formed antigen–antibody complex inhibited partly the active center of HRP, and decreased the immobilized HRP to H2O2 reduction. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal conditions, the current change obtained from the labeled HRP relative to thionine–H2O2 system was proportional to the IL-6 concentration in the range of 5–100 ng L−1 with a detection limit of 1.0 ng L−1 (at 3δ). The flow-injection immunoassay system could automatically control the incubation, washing and measurement steps with acceptable reproducibility and good stability. Moreover, the proposed immunosensors were used to analyze IL-6 in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting IL-6 in the clinical diagnosis.  相似文献   

20.
Journal of Solid State Electrochemistry - A comparative study about the electrochemical response of glassy carbon electrode modified with four different carbon nanomaterial (CNM) against dsDNA is...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号