首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We propose a general method for optical control of magnetic Feshbach resonances in ultracold atomic gases with more than one molecular state in an energetically closed channel. Using two optical frequencies to couple two states in the closed channel, inelastic loss arising from spontaneous emission is greatly suppressed by destructive quantum interference at the two-photon resonance, i.e., dark-state formation, while the scattering length is widely tunable by varying the frequencies and/or intensities of the optical fields. This technique is of particular interest for a two-component atomic Fermi gas, which is stable near a Feshbach resonance.  相似文献   

2.
Scattering length, which can be measured in Bose-Einstein condensate and Feshbach molecule experiments, is extremely sensitive to the variation of fundamental constants, in particular, the electron-to-proton mass ratio (m(e)/m(p) or m(e)/Lambda(QCD), where Lambda(QCD), is the QCD scale). Based on single- and two-channel scattering models, we show how the variation of the mass ratio propagates to the scattering length. Our results suggest that variation of m(e)/m(p) on the level of 10(-11) - 10(-14) on the level of can be detected near a narrow magnetic or an optical Feshbach resonance by monitoring the scattering length on the 1% level. Derived formulas may also be used to estimate the isotopic shift of the scattering length.  相似文献   

3.
We report a dramatic magnetic-field dependence in the lifetime of trapped, ultracold diatomic molecules created through an s-wave Feshbach resonance between fermionic atoms. The molecule lifetime increases from less than 1 ms away from the Feshbach resonance to greater than 100 ms near resonance. We also have measured the trapped atom lifetime as a function of magnetic field near the Feshbach resonance; we find that the atom loss is more pronounced on the side of the resonance containing the molecular bound state.  相似文献   

4.
We calculate the three-body recombination rate into a shallow dimer in a gas of cold bosonic atoms near a Feshbach resonance using a two-channel contact interaction model. The two-channel model naturally describes the variation of the scattering length through the Feshbach resonance and has a finite effective range. We confront the theory with the available experimental data and show that the two-channel model is able to quantitatively describe the existing data. The finite effective range leads to a reduction of the scaling factor between the recombination minima from the universal value of 22.7. The reduction is larger for larger effective ranges or, correspondingly, for narrower Feshbach resonances.  相似文献   

5.
We observe large-amplitude Rabi oscillations between an atomic and a molecular state near a Feshbach resonance. The experiment uses 87Rb in an optical lattice and a Feshbach resonance near 414 G. The frequency and amplitude of the oscillations depend on the magnetic field in a way that is well described by a two-level model. The observed density dependence of the oscillation frequency agrees with theoretical expectations. We confirmed that the state produced after a half-cycle contains exactly one molecule at each lattice site. In addition, we show that, for energies in a gap of the lattice band structure, the molecules cannot dissociate.  相似文献   

6.
We investigate the modulational instability of symmetric and asymmetric continuous wave solutions in Bose–Einstein condensates in optical lattices with Feshbach resonance managed atomic scattering length. The model is based on a pair of averaged coupled mode Gross–Pitaevskii equations. We analyze the characteristics of the modulational instability in the form of typical dependence of the instability growth rate on the perturbation wavenumber and system’s parameters. We have numerically solved the coupled mode equations by using the split step Fourier method. Convincing agreement has been obtained between analytical and numerical results. Furthermore, the moving and stationary gap solitons in the first spectral gap of the optical lattices for the same amplitude but different phases in the presence and absence of the mean atomic scattering length under the Feshbach resonance management are also constructed.  相似文献   

7.
《Physics letters. A》2014,378(1-2):43-47
We theoretically investigate optical control of magnetic Feshbach resonance in Bose gases with two optical fields. The two optical fields couple two ground states through an excited state. Compared with the usual single-optical scheme, two optical fields can greatly suppress the inelastic loss resulting from spontaneous emission by the destructive quantum interference. Using the mean field theory, the analytical formula of the scattering length is obtained. The results show that the scattering length can be modified in a large range by changing the Rabi frequency or the optical field frequency. The strong atom–molecule interaction has obvious effect on the scattering length.  相似文献   

8.
We study the molecular behavior of two atoms interacting near a Feshbach resonance in the presence of a 1D periodic potential. The critical value of the scattering length needed to produce a molecule and the binding energy at resonance are calculated as a function of the intensity of the periodic potential. Because of the non-separability of the center of mass and relative motion, the binding energy depends on the quasimomentum of the molecule. This has dramatic consequences on the molecular tunneling properties, which become strongly dependent on the scattering length.  相似文献   

9.
We report on the production of a pure sample of up to 3 x 10(5) optically trapped molecules from a Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach resonance. For purification, a Stern-Gerlach selection technique is used that efficiently removes all trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach resonance, the gas exhibits a remarkable stability with respect to collisional decay.  相似文献   

10.
We use a two-channel contact interaction model to describe a system of three identical bosons. The two-channel model quantitatively describes the phenomena of Feshbach resonance in agreement with the phenomenological expression relating scattering length to magnetic detuning. The model also has a finite effective range. We investigate finite range effects in three-body recombination. The simpler one-channel contact interaction model predicts a characteristic geometric scaling of minima in the recombination coefficient as a function of scattering length with scaling parameter 22.7. We show that this factor is reduced when the effective range is included. We compare calculations to experiment.  相似文献   

11.
We study elastic collisions in an optically trapped spin mixture of fermionic lithium atoms in the presence of magnetic fields up to 1.5 kG by measuring evaporative loss. Our experiments confirm the expected magnetic tunability of the scattering length by showing the main features of elastic scattering according to recent calculations. We measure the zero crossing of the scattering length at 530(3) G which is associated with a predicted Feshbach resonance at approximately 850 G. Beyond the resonance we observe the expected large cross section in the triplet scattering regime.  相似文献   

12.
Using a Feshbach resonance, we create ultracold fermionic molecules starting from a Bose-Fermi atom gas mixture. The resulting mixture of atoms and weakly bound molecules provides a rich system for studying few-body collisions because of the variety of atomic collision partners for molecules; either bosonic, fermionic, or distinguishable atoms. Inelastic loss of the molecules near the Feshbach resonance is dramatically affected by the quantum statistics of the colliding particles and the scattering length. In particular, we observe a molecule lifetime as long as 100 ms near the Feshbach resonance.  相似文献   

13.
S. Jonsell 《Few-Body Systems》2002,31(2-4):255-260
 I study two interacting bosons confined to a harmonic trap. The interaction is assumed to be of zero range and is expressed in terms of the s-wave scattering length. The energy shifts of the harmonic-oscillator states due to the atom-atom interaction are calculated analytically. It is found that for an ordinary potential the interaction energy depends only on the scattering length, while if the scattering length is modified by a near-threshold Feshbach resonance there is also a dependence on the width of the resonance. Received October 25, 2001; accepted for publication November 9, 2001  相似文献   

14.
We consider a three-boson system with resonant binary interactions and show that for sufficiently narrow resonances three-body observables depend only on the resonance width and the scattering length. The effect of narrow resonances is qualitatively different from that of wide resonances revealing novel physics of three-body collisions. We calculate the rate of three-body recombination to a weakly bound level and the atom-dimer scattering length and discuss implications for experiments on Bose-Einstein condensates and atom-molecule mixtures near Feshbach resonances.  相似文献   

15.
A zero-range approach to atom-molecule coupling is developed in analogy to the Fermi-Huang pseudopotential approach to collisions. It is shown by explicit comparison to an exactly solvable finite-range model that replacing the molecular bound-state wave function with a regularized delta function can reproduce the exact scattering amplitude in the long-wavelength limit. Using this approach, we find an analytical solution to the two-channel Feshbach resonance problem for two atoms in a spherical harmonic trap, highlighting the strong dependence of the effective scattering length and bare-molecule population on the atom-molecule coupling strength.  相似文献   

16.
We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.  相似文献   

17.
The contact I, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter 1/(k(F)a), where k(F) is the Fermi wave vector and a is the s-wave scattering length, and the temperature T/T(F), where T(F) is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.  相似文献   

18.
程冬  李亚  凤尔银  黄武英 《中国物理 B》2017,26(1):13402-013402
We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule,taking the He–PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom–molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.  相似文献   

19.
We develop a diagrammatic approach for solving few-body problems in heteronuclear fermionic mixtures near a narrow interspecies Feshbach resonance. We calculate s-, p-, and d-wave phaseshifts for the scattering of an atom by a weakly-bound dimer. The fermionic statistics of atoms and the composite nature of the dimer lead to a strong angular momentum dependence of the atom-dimer interaction, which manifests itself in a peculiar interference of the scattered s- and p-waves. This effect strengthens with the mass ratio and is remarkably pronounced in 40K-(40K-6Li) atom-dimer collisions. We calculate the scattering length for two dimers formed near a narrow interspecies resonance. Finally, we discuss the collisional relaxation of the dimers to deeply bound states and evaluate the corresponding rate constant as a function of the detuning and collision energy.  相似文献   

20.
We apply a two-channel Skyrme–Hartree–Fock model to describe an atomic Bose–Einstein condensate near a Feshbach resonance. In this model the single-atom wave-function has two components corresponding to the two intrinsic states of the atom related to the Feshbach resonance. From the variational principle we derive the corresponding system of two coupled equations for the single-atom wave-function—a generalization of the Gross–Pitaevskii equation. We carry out an exploratory gaussian variational calculation and show that the two-component model can successfully describe the collapse of the condensate near a Feshbach resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号