首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of three-level photon echo has been predicted and analytically described. In contrast to the conventional three-level echo, whose formation involves three resonant ultrashort excitation pulses spaced in time, two of which are resonant to different optically allowed and adjacent transitions with different frequencies, the echo predicted arises under the conditions of formation of the conventional two-pulse echo and requires only two pump pulses of the same frequency. A theory is developed for the conditions of experiments on generation of a superradiance pulse at the 3 P 0-3 H 6 transition in impurity praseodymium ions in the LaF3 matrix upon ultrashort coherent excitation of the adjacent optically allowed 3 H 4-3 P 0 transition in praseodymium. It is shown that the superradiance pulse after its deexcitation does not polarize the medium at the 3 P 0-3 H 6 generation transition and completely eliminates polarization at the 3 H 4-3 P 0 excitation transition. However, simultaneously, the superradiance pulse transfers the optical coherence from the excitation transition to the optically forbidden 3 H 6-3 H 4 transition. Thus, the phase memory about the effect of the excitation superradiance pulse is retained in the medium within a time interval that is shorter than the irreversible relaxation time of the optically forbidden transition.  相似文献   

2.
The isotopic frequency shift for the 3P1-3P0Δmj=0 fine structure transition in the first metastable triplet of 24Mg and 26Mg is reported. The transitions corresponding to the two even isotopes of Mg have been observed via the fluorescence emission at 4571 Å of the intercombination line 3P1-1P0 in a metastable atomic beam. The center frequencies have been measured with an uncertainty of 7×10-9; the isotopic shift turned out to be 1706 ± 2 kHz.  相似文献   

3.
The luminescent characteristics of Pr3+-activated LaAlGe2O7 were investigated. In response to excitement using 448 nm blue light, the emission spectra involved most of the 3P03HJ transitions. The dominant emission came from the 3P03H4 transition at 487 nm. 1D2 fluorescence quenching was observed in highly doped samples and is related to the cross-relaxation processes among neighboring Pr3+ ions. In contrast with conventional Pr3+-activated phosphors, the extraordinary excitation spectra showed only intense f-f transition of Pr3+ ions, while the 4f-5d transition was eliminated. This is ascribed to photoionization. By analyzing absorption and excitation spectra, it is recognized that no efficient energy transfer occurs between Pr3+ and the host lattice in LaAlGe2O7.  相似文献   

4.
The photoluminescence properties of the Bi3+ in sol-gel derived ZnTiO3 nanocrystals have been investigated. An ultra-violet emission at 360 nm and a visible emission band at 506 nm have been observed, originating from two kinds of emission centers. The former is ascribed to the 3P1-1S0 transition of Bi3+ and the latter to the recombination of the electrons with the photo-generated holes trapped in the zinc vacancies. In all cases the latter contribution is predominant.  相似文献   

5.
In this paper, we present the photoluminescence properties of Pr3+-, Sm3+- and Dy3+-doped germanate glasses and glass ceramics. From the X-ray diffraction measurement, the host glass structure was determined. These glasses have shown strong absorption bands in the near-infrared (NIR) region. Compared to Pr3+-, Sm3+- and Dy3+-doped glasses, their respective glass ceramics have shown stronger emissions due to the Ba2TiGe2O8 crystalline phase. For Pr3+-doped glass and glass ceramic, emission bands centered at 530 nm (3P03H5), 614 nm (3P03H6), 647 nm (3P03F2) and 686 nm (3P03F3) have been observed with 485 nm (3H43P0) excitation wavelength. Of them, 647 nm (3P03F2) has shown bright red emission. Emission bands of 4G5/26H5/2 (565 nm), 4G5/26H7/2 (602 nm) and 4G5/26H9/2 (648 nm) for the Sm3+:glass and glass ceramic, with excitation at 6H5/24F7/2 (405 nm) have been recorded. Of them, 4G5/26H7/2 (602 nm) has shown a bright orange emission. With regard to the Dy3+:glass and glass ceramic, a bright fluorescent yellow emission at 577 nm (4F9/26H13/2) has been observed, apart from 4F9/26H11/2 (667 nm) emission transition with an excitation at 454 nm (6H15/24I15/2) wavelength. The stimulated emission cross-sections of all the emission bands of Pr3+, Sm3+ and Dy3+:glasses and glass ceramics have been computed based on their measured full-width at half-maxima (FWHM, Δλ) and lifetimes (τm).  相似文献   

6.
In this contribution, photoluminescence and time-resolved photoluminescence spectra of Ca(NbO3)2 doped with Pr3+ obtained at high hydrostatic pressure up to 72 kbar applied in a diamond anvil cell are presented. At ambient conditions, the emission spectrum obtained in the time interval 0-1 μs is dominated by spin-allowed transitions from the 3P0 state. On the other hand, transitions from 1D2, characterized by a decay time equal to 30 μs dominate the steady-state luminescence.At pressures lower than 60 kbar, the continuous wave emission spectrum consists of sharp lines peaking between 600 and 625 nm, related to the 1D23H4 transition and three lines at 500, 550 and 650 nm related to emission transitions originating from the 3P0 level of Pr3+. The emission from the 1D2 excited state depends weakly on the pressure. Its decay time decreases from 33 μs at ambient pressure to less than 22 μs at 68 kbar. On the other hand, the 3P0 emission is strongly pressure dependent. At pressures of 60 kbar and higher, the Pr3+ emission intensity from the 3P0 state decreases. This is accompanied by a strong shortening of the luminescence decay time.The observed pressure quenching of the f-f emission transitions and the concomitant lifetime shortening have been attributed to increasing crossover from the 3P0 state of Pr3+ to a Pr3+-trapped exciton state.  相似文献   

7.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

8.
Room temperature visible and near infrared optical absorption and emission spectra of Sm3+-doped lead borate titanate aluminum fluoride (LBTAF) glasses with molar composition (50−x) PbO−30H3BO3−10TiO2−10AlF3xSm2O3 (x=0.1, 0.5, 1.0 and 2.0) have been analyzed. Energy parameters for the 4f5 electronic configuration of Sm3+: LBTAF glasses have been evaluated using free-ion Hamiltonian model. The experimental oscillator strengths of absorption bands have been used to determine the J-O parameters. Fluorescence spectra were recorded by exciting the samples with 402 nm. Using the J-O parameters and luminescence data, the radiative transition probabilities (AR), branching ratios (βR) and stimulated emission cross-sections (σe) were obtained. The decay curves of 4G5/26H7/2 transition exhibit single exponential for lower concentration (0.1 mol%) and non-exponential for higher concentrations. This concentration quenching has been attributed to the energy transfer through cross-relaxation between Sm3+ ions. From the values of the radiative parameters, it is concluded that 1.0 mol% Sm3+-doped LBTAF glass may be used for laser active medium with emission wavelength at 600 nm.  相似文献   

9.
Effect of composition on the structure, spontaneous and stimulated emission probabilities of various 1.0 mol% Tm2O3 doped (1−x)TeO2+(x)WO3 glasses were investigated using Raman spectroscopy, ultraviolet-visible-near-infrared (UV/VIS/NIR) absorption and luminescence measurements.Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f-4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level were observed. Integrated absorption cross-section of each band except that of 3H5 level was found to vary with the glass composition. Luminescence spectra of the samples were measured upon 457.9 nm excitation. Three emission bands centered at 476 nm (1G43H6 transition), 651 nm (1G43H4 transition) and 800 nm (1G43H5 transition) were observed. Spontaneous emission cross-sections together with the luminescence spectra measured upon 457.9 nm excitation were used to determine the stimulated emission cross-sections of these emissions.The effect of glass composition on the Judd-Ofelt parameters and therefore on the spontaneous and the stimulated emission cross-sections for the metastable levels of Tm3+ ions were discussed in detail. The effect of temperature on the stimulated emission cross-sections for the emissions observed upon 457.9 nm excitation was also discussed.  相似文献   

10.
The two most intense bands of the 370 nm electronic band system of tropolone have been rotationally analysed. They are separated by 18·93 cm-1 and it has been shown that the high wavenumber band is the 0--0- (H1 1) transition in what is almost certainly the internal hydrogen-bonding vibration v H : the low wavenumber band is the 0+-0+ (00 0) transition. A rotational contour analysis of both bands shows that there is an intensity alternation in K a″ such that the ratio K a″ even : odd is 10 : 6 in the 0+-0+ band and 6 : 10 in the 0--0- band. The intensity alternation, the nearly equal intensities of the 0+-0+ and 0--0- bands, the separation of these two bands and the anharmonic behaviour of v H show that the separation of the 0+ and 0- levels is small in the ground electronic state (probably less than 50 cm-1) and is 18·93 cm-1 larger in the excited electronic state.

The 0+-0+ and 0--0- bands are both type B showing that the electronic transition is à 1 B 2-X 1 A 1 and therefore π*-π rather than π*-n. The π*-n transition is probably shifted to high wavenumber by the internal hydrogen-bonding.  相似文献   

11.
We report on the blue-green-red up-conversion spectroscopic properties of Pr3+/Yb3+-codoped oxyhalide tellurite glasses upon excitation of a conventional 980 nm laser diode (LD). Significant enhancement of the blue-green-red up-conversion emission intensity has been observed with increasing PbCl2 doping. The up-conversion intensity has a quadratic dependence on incident pump laser power, indicating a two-photon process. The population of the Pr3+ upper 3P0 emitting level was accomplished through a combination of a ground state absorption, energy transfer and excitated state absorption. 1.3-μm emission in the second telecom window originated from Pr3+:1G43H5 transition has also been investigated upon excitation at 980 nm LD. The measured peak wavelength and full width at half-maximum of the fluorescent are 1335 nm and ∼100 nm, respectively. An enhanced 1.3μm emission with increasing PbCl2 doping has also been observed. Codoping of Yb3+ significantly enhance both the blue-green-red up-conversion emission and 1.3-μm emission intensity by way of a nonradiative Yb3+:2F5→Pr3+:1G4 energy transfer.  相似文献   

12.
The emission spectrum of the B3Π1-X1Σ+ band-system of the InCl molecule has been recorded on a Fourier transform spectrometer at an apodized resolution of 0.025 cm−1. The rotational structure of 1-0, 2-1, 0-0, 0-1, 1-2, 0-2, and 1-3 bands belonging to the B3Π1-X1Σ+ transition of In35Cl has been analyzed and accurate equilibrium rotational constants of the B3Π1 state, have been obtained. Precise Λ-doubling constants of the B3Π1 state (v=0, 1, and 2) are also reported for the first time.  相似文献   

13.
SrAl12O19:Pr3+, Ti4+ phosphor suitable for field emission displays is prepared by the wet chemical gel-carbonate method and the mechanism of enhancement in red photoluminescence (PL) intensity with Ti4+ therein has been investigated. The PL spectra of Pr3+ show both 1D2-3H4 and 3P0-3H6 emission in the red region with very weak intensity when excited at 355 nm. The emission intensity has increased by about 100 times at room temperature in the compositional range SrAl12−xTixO19+x/2:Pr3+, with 0.1≤x≤0.3 in comparison to Ti-free SrAl12O19:Pr3+. TEM investigations show the presence of exsolved nanophase of SrAl8Ti3O19, the precipitation of which is preceded by the presence of defect centers at the interfacial regions between the semicoherent transient phase and the parent SrAl12O19 matrix. The presence of transitional nanophase and the associated defects modify the excitation-emission process by way of formation of electronic sub-levels at lower energy (3.5 eV) than the band gap of SrAl12O19 (∼7 eV) followed by non-resonance energy transfer to Pr3+ level, leading to magnetic-dipole related red emission with enhanced intensity. The PL intensity of Pr3+ decreases at high Ti4+ concentrations (x>0.3) due to higher extent of segregation of non-emissive SrAl8Ti3O19:Pr3+ phase.  相似文献   

14.
Luminescence spectra and photoluminescence excitation spectra of Y2O3:Bi and Y3Al5O12:Bi thin films were investigated. Luminescence was stimulated by the emission from two types of centers that were associated with the substitution of Bi3+ for Y3+ in sites of the crystal lattice of Y2O3 (Y3Al5O12) with point symmetries C2 and C3i (D2 and C3i). The emission of Bi3+ in the site with point symmetry C3i causes blue luminescence in both Y2O3:Bi and Y3Al5O12:Bi films with maxima at 3.03 eV and 3.15 eV, respectively, that is related to the 3P1-1S0 transition. The emission of Bi3+ in the site with point symmetry C2 gives green luminescence in Y2O3:Bi with the maximum at 2.40 eV that is also related to the 3P1-1S0 transition. The emission of Bi3+ in the site with point symmetry D2 leads to ultraviolet luminescence in Y3Al5O12:Bi with the maximum at 3.75 eV that corresponds to the 3P1-1S0 transition. The red luminescence band with the maximum at 1.85 eV in Y2O3:Bi is due to the presence of structural defects. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 202–207, March–April, 2008.  相似文献   

15.
The emission spectrum of the molecule OH (A2Σ→X2Π, 0–0) during a high-voltage, bi-directional pulsed corona discharge consisting of a gas mixture of N2 and H2O in a wire-plate reactor has been successfully recorded under severe electromagnetic interference at atmospheric pressure. The relative vibrational populations and the vibrational temperature of N2 (C, v′) have also been determined. Due to the difficulty of determining the exact overlapping spectral line shape function of the OH (A2Σ→X2Π, 0–0) and the Δv=+1 vibrational transition band of N2 (C3Πu→B3Πg), a practicable Gaussian form is used for calculating the emission intensity of OH (A2Σ→X2Π, 0-0) and the Δv=+1 vibrational transition band of N2 (C3Πu→B3Πg). The emission intensity of OH (A2Σ→X2Π, 0–0) has been evaluated with a satisfactory accuracy by subtracting the emission intensity of the Δv=+1 vibrational transition band of N2 (C3Πu→B3Πg) from the overlapping spectra. The relative population of OH (A2Σ) has been obtained by the emission intensity of OH (A2Σ→X2Π, 0–0) and Einstein's transition probability. The influences of peak voltage, pulse repetition rate and O2 flow rate on the relative population of OH (A2Σ) radicals have also been investigated. We found that the relative population of OH (A2Σ) rises with an increase in both the peak applied voltage and the pulse repetition rate. When oxygen is added to an N2 and H2O gas mixture, the relative population of OH (A2Σ) radicals decreases exponentially with an increase in added oxygen. The main physicochemical processes involved are also discussed in this paper.  相似文献   

16.
Spectroscopic properties of one mol% Pr2O3 embedded in 40%PbO–60%P2O5 glass have been investigated at room temperature. From the absorption spectra energy levels of the observed bands are assigned. Using free ion Hamiltonian theoretical values of energy of 13 multiplets of Pr3+ are calculated. Judd–Ofelt intensity parameters have been estimated by including and excluding the hypersensitive transition (3H43P2). The best set of Judd–Ofelt parameters are obtained by omitting 3H43P2 transition from the calculation. These parameters are used to evaluate the important laser parameters for various emission lines. Our investigation reveals that the present glass may be utilized as a laser active medium corresponding to 3P03H4 and 1D23H4 transitions respectively, for 484.6 nm (blue) and 599.5 nm (strong orange) emissions. Indirect and direct optical band gap energies of Pr3+ doped lead phosphate glass matrix have also been reported.  相似文献   

17.
The spectroscopic and laser properties of Nd3+ and Dy3+ ions in lead borate glass were studied. Luminescence spectra recorded in the near-infrared and visible ranges correspond to 4F3/2-4IJ/2 (J=9, 11, 13) transitions of Nd3+ and 4F9/2-6HJ/2 (J=11, 13, 15) transitions of Dy3+, respectively. Luminescence decay curves were analyzed as a function of activator concentration. Luminescence quenching is observed, which is due to Ln-Ln interaction increasing. Several spectroscopic parameters relevant to laser potential of Ln3+ ions (Ln=Nd, Dy) in lead borate glass were determined. The relatively large values of the quantum efficiency and the room-temperature emission cross-section for the 4F3/2-4I11/2 transition of Nd3+ at 1061 nm and the 4F9/2-6H13/2 transition of Dy3+ at 573 nm imply that Ln-doped lead borate glasses can be considered as promising solid-state materials for laser applications.  相似文献   

18.
The linear polarization of quadrupole emission by the J=2-J 0=0 transition under conditions of laser excitation in a gas medium is studied. Cases of excitation through dipole and quadrupole absorption of monochromatic laser radiation are considered. Taking into account the anisotropy of collisional relaxation, the contributions of polarization moments of the second and fourth ranks, i.e., those with usual and hexadecapole alignments, to the signal of linear polarization of quadrupole emission are calculated. The dependence of this signal on the laser frequency, the density of the gas medium, and the angles determining the orientation of the system of axes of observation of light polarization relative to a laser ray is studied. The numerical calculations of contributions of usual and hexadecapole alignment to the signal of linear polarization are made for the magnetic quadrupole transition J=2-J 0=0 between the states 2p 5(2 P 1 2/0 )3p′[3/2]2 and 2p 5(2 P 1 2/0 )3s 3s′[1/2]0 of neon atoms in the xenon atmosphere.  相似文献   

19.
Using a reductive perturbation technique (RPT), the Korteweg‐de Vries (KdV) equation for nonlinear electrostatic waves in multi‐ion plasmas is derived with appropriate boundary conditions. Furthermore, compressive and rarefactive cnoidal wave and soliton solutions are discussed. In our model, the multi‐ion plasma consists of light dynamic warm ions, heavy cold ions, and inertialess electrons, which follows the Maxwell‐Boltzmann distribution. It is observed that in such an unmagnetized multi‐ion plasma, two characteristic electrostatic waves i.e., slow ion‐acoustic (SIA) waves and fast ion‐acoustic (FIA) waves, can propagate. The results are discussed by considering two types of multi‐ion plasmas i.e., H+–O+–e plasma and H?–O+–e plasma that exist in space plasmas. It is found that for H+–O+–e plasma, the SIA cnoidal wave and soliton form both positive (compressive) and negative (rarefactive) potential pulses, which depend on the temperature and density of the light and warm ions. However, only electrostatic positive potential structures are obtained for FIA cnoidal wave and soliton in H+–O+–e plasma. In the case of H?–O+–e plasma, the SIA cnoidal wave and soliton form only compressive structures, while the FIA cnoidal wave and soliton compose rarefactive structures. The effects of light ions' density and temperature on nonlinear potential structures are investigated in detail. The parametric results are also demonstrated, which are applicable to space and laboratory multi‐ion plasma situations.  相似文献   

20.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号