首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体,采用浸渍法制备了Ni2P/TiO2-Al2O3催化剂,并用X射线衍射(XRD)、N2吸附比表面积(BET)测定、热重-差热分析(TG-DTA)、X射线光电子能谱(XPS)等技术对催化剂的结构和性质进行了表征.催化剂加氢脱硫(HDS)和脱氮(HDN)活性评价在实验室固定床连续反应装置上,以噻吩和吡啶为模型反应物进行.考察了不同载体、Ni2P负载量、标称Ni/P摩尔比、催化剂焙烧温度对Ni2P/TiO2-Al2O3催化剂上同时进行的噻吩加氢脱硫和吡啶加氢脱氮性能的影响.结果表明,TiO2含量为80%(w)的TiO2-Al2O3复合氧化物为载体,Ni2P负载量为30.0%(w),标称Ni/P摩尔比为1/2,催化剂焙烧温度为500℃时,Ni2P/TiO2-Al2O3催化剂加氢脱硫脱氮活性最高.在360℃,3.0MPa,氢油比800(V/V),液时体积空速1.5h-1的条件下,噻吩HDS和吡啶HDN转化率分别为61.32%和64.43%.  相似文献   

2.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体,以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂,并用X射线衍射(XRD)、N2吸附比表面积测定、H2程序升温氢还原(H2-TPR)、程序升温氧化(TPO)、X射线光电子能谱(XPS)技术对催化剂的结构和性质进行了表征,考察了CA/Ni摩尔比对在Ni2P/TiO2-Al2O3催化剂上进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响.结果表明:适量的CA可以丰富催化剂的孔道,提高催化剂的比表面积.当n(CA)/n(Ni)=2:1时,催化剂的比表面积达到126.75m2·g-1,与不加CA时相比,提高了57.05m2·g-1.调节n(CA)/n(Ni)能够改善活性相的分布,改变活性相的种类;引入CA使Ni和P前驱体的还原温度明显降低,促进活性相Ni2P的生成,一定程度上能够抑制催化剂表面炭的形成和沉积,提高其稳定性.n(CA)/n(Ni)=2:1时,催化剂具有最好的加氢脱硫活性,在360°C,3.0MPa,氢油比为500(V/V),液时体积空速为2.0h-1的条件下,二苯并噻吩转化率为99.5%,可将模拟油中硫含量由2%(w)降低到0.01%(w).  相似文献   

3.
使用TiO2、Al2O3以及TiO2-Al2O3复合载体考察了载体对磷化镍催化剂活性相和加氢脱氮性能的影响。不同钛铝原子比的TiO2-Al2O3复合载体采用原位-溶胶凝胶法制备,负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备。以喹啉为模型化合物在固定床反应器上对催化剂的加氢脱氮性能进行评价,采用XRD、N2吸附、TEM和H2-TPR等技术对催化剂和载体进行了表征。结果表明,制成的复合载体基本保留了最初引入的γ-Al2O3的孔特征,分散在γ-Al2O3表面的TiO2以锐钛矿晶型存在。不同载体对催化剂的H2还原行为有显著影响,所形成的活性物种也不相同。Al2O3中引入TiO2可以减弱P物种和Al2O3之间的相互作用,有利于Ni2P活性相的生成和催化活性的提高。当Ti/Al的原子比为1∶8时,Ni2P/TiO2-Al2O3催化剂比Ni2P/TiO2、Ni2P/Al2O3催化剂具有更高的加氢脱氮活性。  相似文献   

4.
在固定床高压微反装置上,考察了预硫化型NiMoS/γ-Al2O3催化剂上二苯并噻吩(DBT)加氢脱硫(HDS)反应和喹啉加氢脱氮(HDN)反应之间的相互影响.结果表明,喹啉对DBT的HDS反应具有强烈的抑制作用,其中对加氢路径比氢解路径的抑制作用更强,这是由喹啉及其HDN反应的中间产物与DBT在活性位上的竞争吸附造成的.在300和340℃时,喹啉对DBT的HDS反应中氢解路径的抑制程度与其HDN中间产物的相对含量紧密相关.而DBT能够提高喹啉的脱氮能力,这源于其HDS产物H2S.H2S促进了催化剂表面硫阴离子空穴向B酸位的转化,从而提高了喹啉HDN中间产物分子的C(sp3)-N键的断裂能力.HDN活性相的保持不需要过多的硫原子.  相似文献   

5.
Ni2P/HZSM-5上噻吩加氢脱硫性能研究   总被引:5,自引:1,他引:5  
采用程序升温还原方法制备了Ni2P/HZSM5催化剂。用X射线衍射 (XRD)、低温N2吸附(BET)、扫描电镜(SEM)等技术对催化剂样品的物相、比表面积、形貌等性质进行了表征。在连续微反系统中测定了Ni2P/HZSM5催化剂对噻吩加氢脱硫催化活性;研究了Ni2P负载量、前驱体中Ni/P摩尔比对催化剂的物相及性能的影响,考察了空速、反应温度、反应压力等操作条件对催化剂上噻吩加氢脱硫性能的影响。实验结果表明,Ni2P/HZSM5催化剂对噻吩加氢脱硫反应具有较高的活性和稳定性。随着Ni2P负载量、前驱体中Ni/P摩尔比的增加,催化剂的活性和稳定性先升高后降低。反应温度和体积空速对Ni2P/HZSM5催化剂的噻吩加氢脱硫性能有较明显的影响,反应压力和进料氢油比的影响相对较小。  相似文献   

6.
NiMoNx/γ-Al2O3催化剂的制备及加氢脱氮性能   总被引:6,自引:0,他引:6  
采用程度升温氮化(TPN)的方法制备了NiMoNx/γ-Al2O3催化剂,考察了它对吡啶加氢脱氮(HDN)反应的催化活性。结果表明,NiMoNx/γ-Al2O3催化剂的活性远远高于NiMoSx/γ-Al2O3催化剂和工业硫化态催化剂。对于NiMoZx/γ-Al2O3催化剂,助剂Ni的作用与硫化物体系中的Ni不同,它不仅是活化氢中心,同时也是脱氮中之心一,NiMoNx/γ-Al2O3催化剂的HDN活  相似文献   

7.
以介孔分子筛SBA-15为载体,Ni组分采用柠檬酸(CA)配合法,制备了Ni2P质量含量为25%~45%、P/Ni为0.8、CA/Ni为0~1.5的一系列CA-Ni2P/SBA-15催化剂.利用XRD和N2吸脱附表征了催化剂结构,以二苯并噻吩(DBT)为模型硫合物,对催化剂加氢脱硫(HDS)性能进行了评价,考察了CA/Ni比对催化剂结构和反应性能的影响.结果表明,催化剂仍然保持有介孔结构,催化活性物相为Ni2P.反应温度为300~340℃时,Ni2P含量和CA/Ni比都对催化剂的性能有一定的影响,反应温度在360℃以上时,Ni2P含量和CA/Ni比对催化剂性能的影响不明显.Ni2P含量为35%、CA/Ni比为1.0的催化剂具有最好的HDS活性,DBT的转化率可达98%.  相似文献   

8.
Ni2P/SBA-15催化剂的结构及加氢脱硫性能   总被引:6,自引:1,他引:6  
以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛SBA-15为载体,用共浸渍法制备了含磷化镍前驱体的样品,然后在氢气流中采用程序升温还原法,制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂.用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征,以噻吩和二苯并噻吩(DBT)为模型化合物,在微型同定床反应器上对催化剂的加氧脱硫(HDS)性能进行了评价.结果表明,Ni2P/SBA-15催化剂中SBA-15的介孔结构依然存在,活性组分Ni2P具有良好的分散性,但随Ni2P含量的增加,催化剂的比表面积、孔容和孔径均有明显减小.当反应温度为320℃时,Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能;反应温度在360℃以上时,所有催化剂都具有优异的深度脱硫催化性能.Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

9.
Ni2P/TiO2的制备及其对苯加氢反应的催化性能   总被引:2,自引:1,他引:2  
采用程序升温还原方法制备了TiO2负载的晶态Ni2P催化剂。用X射线衍射(XRD)及低温N2吸附(BET)等技术对样品的物相、比表面积等性质进行了表征。以苯气相加氢为模型反应考察了Ni2P/TiO2催化剂加氢性能,并对Ni2P负载量、前驱体中P的质量分数对催化剂的物相及性能的影响进行了研究。实验结果表明, TiO2负载的晶态磷化镍催化剂上,Ni2P是主要物相。Ni2P/TiO2催化剂对苯加氢反应具有较高的活性、选择性以及良好的稳定性能。Ni2P/TiO2制备对催化剂的性能有影响。Ni2P负载量增加,催化剂的活性先升高后降低,Ni2P负载量为12%时催化剂活性较高。催化剂前驱体中P的质量分数越高,制备出的催化剂对苯加氢反应的稳定性越好,但随前驱体中P的质量分数增加,催化反应的活性先升高,后降低。与Ni2P/SiO2比较,Ni2P/TiO2催化剂具有较高的活性和稳定性。  相似文献   

10.
 以硅酸钠为原料,以大孔Al2O3为基载体,采用水解沉积法制备了SiO2-Al2O3复合载体. 进而以非晶态镍基合金为前驱体,在低温下通过PH3处理制备了Ni2P/SiO2-Al2O3催化剂. 用X射线衍射、红外光谱、扫描电镜、电感耦合等离子体发射光谱和N2吸附技术对复合载体和催化剂进行了表征,并以4,6-二甲基二苯并噻吩为探针在小型连续流动固定床反应器上考察了催化剂的加氢脱硫性能. 结果表明,在γ-Al2O3载体表面引入SiO2能够明显减少γ-Al2O3表面四配位的Al3+离子,从而减弱Ni2P/SiO2-Al2O3催化剂中Ni2P和γ-Al2O3载体表面的强相互作用. 加入适量的SiO2后, SiO2-Al2O3复合载体仍能保持大孔γ-Al2O3载体孔结构的优势. 在实验范围内, Ni2P/SiO2-Al2O3催化剂表现出很好的加氢脱硫性能.  相似文献   

11.
用微波技术制备NiW/TiO2-Al2O3加氢脱硫催化剂   总被引:7,自引:0,他引:7  
 采用微波技术制备了NiW/TiO2-Al2O3加氢脱硫催化剂,并用NH3-TPD,Py-FT-IR,TPR和TPS(程序升温硫化)对催化剂进行了表征; 以噻吩为模型化合物,在中压固定床微反装置上考察了催化剂的加氢脱硫性能. 结果表明,在w(TiO2)=15%的催化剂样品中,微波处理的催化剂的活性比常规催化剂高. 微波处理改变了载体和催化剂表面的酸性质,催化剂样品表面的强酸酸量减少,弱酸和中强酸酸量增加. 微波处理的催化剂的还原性能和硫化性能均好于常规法制备的催化剂. 这可能是微波技术制备的催化剂具有较高加氢脱硫活性的原因.  相似文献   

12.
微波辐射法制备NiW/TiO2-Al2O3加氢脱硫催化剂   总被引:2,自引:0,他引:2  
 利用微波技术和常规等体积浸渍法制备了一系列NiW/TiO2-Al2O3加氢脱硫催化剂样品,并采用BET,XRD,XPS和TPS(程序升温硫化)方法对催化剂样品进行了表征. 结果表明,微波处理改变了催化剂的孔径分布,提高了WO3,NiO和TiO2在Al2O3表面的的分散性,削弱了WO3和NiO同载体的强相互作用,改善了催化剂的硫化性能. 噻吩脱硫活性考察结果表明,经微波处理的催化剂上噻吩转化率比常规催化剂上提高约5%.  相似文献   

13.
免预硫化的加氢脱硫MoNiP/Al2O3催化剂的制备和表征   总被引:2,自引:0,他引:2  
在Mo-Ni-P-O浸渍液中添加一定量的极性有机物如柠檬酸等,采用共浸渍法制备了一种不需预硫化和焙烧也具有较高加氢脱硫活性的MoNiP/Al2O3催化剂,并用N2吸附、程序升温还原、X射线光电子能谱、红外光谱和元素分析对催化剂进行了表征.结果表明,柠檬酸的添加削弱了金属组分与载体间的相互作用,有利于金属组分在载体表面的分散,且改善了催化剂的还原性,使催化剂在与含硫反应物料接触过程中自发硫化,从而有利于催化剂加氢脱硫活性的提高.  相似文献   

14.
超声波-微波法制备NiW/Al2O3加氢脱硫催化剂   总被引:12,自引:0,他引:12  
 采用一次浸渍技术制备了NiW/Al2O3加氢脱硫(HDS)催化剂,在制备过程中采用超声波处理浸渍液,采用微波进行样品干燥. 以噻吩为模型化合物,在微反装置上评价了该催化剂的加氢脱硫活性. 使用X射线光电子能谱和透射电镜等表征手段研究了催化剂的表面状态和物化性. 结果表明,使用超声波及微波技术制备的NiW/Al2O3催化剂具有较高的加氢脱硫活性,催化剂的活性组分较易硫化,可生成更多的硫化物种参与反应. 催化剂中硫化态钨的表面原子浓度较高,从而使硫化态钨物种保持较高的表面分散度,有利于增加活性中心的数目. 该催化剂的活性中心结构具有较多配位不饱和的边缘位和棱边位,因而具有较高的加氢脱硫活性.  相似文献   

15.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备.通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能.结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P.不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

16.
 采用连续流动微反装置考察了活性组分Ni/(Ni+W)原子比及\r\n预硫化条件对NiW/γ-Al2O3催化剂噻吩加氢脱硫(HDS)反应活性的\r\n影响.用X射线光电子能谱和电镜微区元素分析方法对硫化态催化剂进\r\n行了表征.结果表明,催化剂的组成、硫化方法、硫化度和反应条件等\r\n都能影响NiW/γ-Al2O3催化剂的HDS反应活性.对于在较低温度(30\r\n0℃)下硫化的催化剂,当反应温度较低(260~290℃)时,最佳Ni/\r\n(Ni+W)原子比为0.50,而当反应温度较高(330~360℃)时,最佳\r\nNi/(Ni+W)原子比为0.23.当催化剂在300~450℃下硫化时,其噻\r\n吩HDS反应活性随硫化温度升高而增大,表明硫化度较高的催化剂具有\r\n较高的HDS反应活性.  相似文献   

17.
磷改性TiO2-Al2O3复合载体在超深度加氢脱硫中的应用   总被引:2,自引:0,他引:2  
 研究了磷改性对纳米TiO2-Al2O3复合载体负载CoMo催化剂的结构和性质的影响,并以4,6-二甲基二苯并噻吩为探针考察了CoMo/P-TiO2-Al2O3催化剂的超深度加氢脱硫性能. 结果表明,在复合载体中加入适量的磷酸盐能够减弱载体组分Al2O3同Co和Mo金属活性组分之间的强相互作用,使硫化后的催化剂中生成具有更高催化活性的多层MoS2簇结构. 而过量磷酸盐的加入则会降低载体的比表面积,使催化剂中出现晶态的CoMoO4,导致催化剂活性降低.  相似文献   

18.
 采用溶胶-凝胶法制备了介孔TiO2-Al2O3复合氧化物载体,考察了载体的焙烧温度对负载型Au-Pd双金属催化剂加氢脱硫性能的影响,并采用X射线衍射、吸附吡啶的程序升温脱附、程序升温还原、红外光谱和N2物理吸附等技术对载体及催化剂进行了表征. 结果表明,不同温度焙烧的TiO2-Al2O3复合载体都具有介孔结构,其中773 K焙烧制得的TiO2-Al2O3复合载体的比表面积和孔容较大, B酸中心较多,以其为载体的Au-Pd 催化剂具有较好的加氢脱硫活性. 表征结果表明, 773 K焙烧制得的Au-Pd/TiO2-Al2O3催化剂中Au-Pd活性组分与载体的相互作用较强,催化剂上形成的AuxPdy合金的晶粒较小且数量较多,催化剂的酸量和活性组分的分散度较大,并且其上进行的加氢脱硫反应的活化能较低,这些因素均有利于催化剂活性的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号