首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang YG  Yuan DQ  Pan L  Jiang FL  Wu MY  Zhang XD  Wei W  Gao Q  Lee JY  Li J  Hong MC 《Inorganic chemistry》2007,46(23):9609-9615
Two 3D cobalt-organic frameworks formulated as [Co3(2,4-pydc)2(micro3-OH)2]n.5nH2O (1) and [Co3(2,4-pydc)2(micro3-OH)2(H2O)]n.7nH2O (2) (2,4-pydc=pyridine-2,4-dicarboxylate) have been hydrothermally synthesized and characterized. Both compounds 1 and 2 exhibit the 3D porous frameworks with hydroxyl-bridged metal Delta-chains. However, in comparison with only two crystallographically independent CoII ions in a unit of 2, three crystallographically independent CoII ions are found in an asymmetric unit of 1, where their Delta-chains are constructed by two types of vertexes sharing quadrangles formed via edge-sharing triangles. Magnetic studies show that 1 exhibits spin-canted antiferomagnetism and a field-induced spin-flop transition while 2 behaves as a normal antiferromagnet. The magnetic properties are largely retained by the porous frameworks of dehydrated 1 and 2 compounds. Gas adsorption measurements indicate that both the dehydrated compounds absorb H2 into their pores.  相似文献   

2.
Along with our recent investigation on the flexible ligand of H(2)ADA (1,3-adamantanediacetic acid), a series of Zn(II) and Cd(II) metal-organic frameworks, namely, [Zn(3)(ADA)(3)(H(2)O)(2)](n)·5nH(2)O (1), [Zn(ADA)(4,4'-bipy)(0.5)](n) (2), [Zn(2)(ADA)(2)(bpa)](n) (3), [Zn(2)(ADA)(2)(bpa)](n) (4), [Zn(2)(ADA)(2)(bpp)](n) (5), [Cd(HADA)(2)((4,4'-bipy)](n) (6), [Cd(3)(ADA)(3)(bpa)(2)(CH(3)OH)(H(2)O)](n) (7), and [Cd(2)(ADA)(2)(bpp)(2)](n)·7nH(2)O (8) have been synthesized and structurally characterized (where 4,4'-bipy = 4,4'-dipyridine, bpa = 1,2-bis(4-pyridyl)ethane and bpp = 1,3-bis(4-pyridyl)propane). Due to various coordination modes and conformations of the flexible dicarboxylate ligand and the different pyridyl-containing coligands, these complexes exhibit structural and dimensional diversity. Complex 1 exhibits a three-dimensional (3D) framework containing one-dimensional (1D) Zn(II)-O-C-O-Zn(II) clusters. Complex 2 exhibits a 2D structure constructed by 1D double chains based on [Zn(2)ADA(2)] units and a 4,4'-bipy pillar. Complexes 3 and 4 possess isomorphic 2D layer structures, resulting from the different coordination modes of carboxylate group of ADA ligands. Complex 5 features a 2D 4(4) layer in which ADA ligands and Zn(II) atoms construct a 1D looped chain and the chains are further connected by bpp ligands. Complex 6 is composed of 1D zig-zag chains that are entangled through hydrogen-bonding interactions to generate a 2D network. Complex 7 is a rare (3,5)-connected network. Complex 8 possesses a 3D microporous framework with lots of water molecules encapsulated in the channels. The structural diversity of the complexes perhaps mainly results from using diverse secondary ligands and different metal centre ions, and means the assistant ligand and metal centre play important roles in the design and synthesis of target metal-organic frameworks. This finding revealed that ADA could be used as an effective bridging ligand to construct MOFs and change coordination modes and conformational geometries in these complexes. The thermogravimetric analyses, X-ray powder diffraction and solid-state luminescent properties of the complexes have also been investigated.  相似文献   

3.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

4.
The reaction between Zn(NO3)2.6H2O and 5-aminoisophthalic acid (aip) in a mixture of diethylformamide (DEF) and ethanol resulted in [Zn(C8H5NO4)(C5H11NO)]n (CPO-8-DEF). This compound is composed of infinite 2D layers with tetrahedral Zn atoms and aip ligands in a triangular topology. The DEF molecules are bonded to Zn, and within each layer, the DEF molecules are oriented in the same direction, while in the subsequent layer, the DEF molecules are oriented in the opposite direction. By introduction of the pillaring ligands 4,4-bipyridine (BPY), 1,2-di-4-pyridylethylene (DPE), 1,2-di-4-pyridylethane (DPA), and 1,3-di-4-pyridylpropane (DPP) into mixtures of N,N'-dimethylformamide and water with Zn(NO3)2 and aip, we have successfully synthesized a series of related pillared bilayer compounds with the same common triangular Zn(aip) layer structural motif as that observed in CPO-8-DEF. The compounds are denoted as CPO-8-BPY ([Zn(C8H5NO4)(C10H8N2)(0.5)]n.3nH2O), CPO-8-DPE ([Zn(C8H5NO4)(C12H10N2)(0.5)]n.2.5nH2O), CPO-8-DPA ([Zn(C8H5NO4)(C12H12N2)(0.5)]n.2.5nH2O), and CPO-8-DPP ([Zn(C8H5NO4)(C13H14N2)(0.5)]n.3nH2O). In all cases, the pillars create spaces inside the bilayers that result in 1D channels running along the [010] directions with dimensions of 3.5 x 6.7 A(2). These channels contain water molecules that can be removed on heating to 150 degrees C, resulting in porous structures. The crystal structures of these porous high-temperature variants have been determined on the basis of powder X-ray diffraction data. All of the compounds show preferential adsorption of H2 over N2 at 77 K.  相似文献   

5.
Russian Journal of Coordination Chemistry - Two coordination polymers, [Zn(Btec)0.5(H2L)]n (I) and [Cd0.5(Tp)0.5(H2L')(H2O)]n ? nH2O (II) (H2L =...  相似文献   

6.
We incorporate metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin (M-H(8)OCPP), for the first time, into porous metal-organic frameworks. The self-assembled porous metalloporphyrinic frameworks [Mn(5)Cl(2)(MnCl-OCPP)(DMF)(4)(H(2)O)(4)]·2DMF·8CH(3)COOH·14H(2)O (ZJU-18; ZJU = Zhejiang University), [Mn(5)Cl(2)(Ni-OCPP)(H(2)O)(8)]·7DMF·6CH(3)COOH·11H(2)O (ZJU-19), and [Cd(5)Cl(2)(MnCl-OCPP)(H(2)O)(6)]·13DMF·2CH(3)COOH·9H(2)O (ZJU-20) are isostructural as revealed by their single X-ray crystal structures. The metalloporphyrin octacarboxylates (M-OCPP) (M = Mn(III)Cl for ZJU-18 and ZJU-20, M = Ni(II) for ZJU-19) are bridged by binuclear and trinuclear metal carboxylate secondary building units to form a 3-periodic, binodal, edge-transitive net with Reticular Chemistry Structure Resource symbol tbo with pore windows of about 11.5 ? and pore cages about 21.3 ? in diameter. The porous nature of these metalloporphyrinic frameworks is further established by sorption studies in which different substrates such as ethanol, acetonitrile, acetone, cyclohexane, benzene, toluene, ethylbenzene, and acetophenone can readily have access to the pores. Their catalytic activities for the oxidation of alkylbenzenes were examined at 65 °C using tert-butyl hydroperoxide as the oxidant. The results indicate that ZJU-18 is much superior to ZJU-19, ZJU-20, and homogeneous molecular MnCl-Me(8)OCPP, exhibiting highly efficient and selective oxidation of ethylbenzene to acetophenone in quantitative >99% yield and a turnover number of 8076 after 48 h.  相似文献   

7.
CHEN  Wen-Tong WEI  Kun-Yu MIAO  Xiao-Fei 《结构化学》2011,30(12):1798-1802
A novel three-dimensional(3-D) compound [Cd4(SeO3)2Cl4(H2O)]n(1) was prepared from a hydrothermal reaction and structurally characterized.Compound 1 crystallizes in the space group Fmmm of the orthorhombic system with eight formula units in a cell:a = 15.5165(4),b = 17.5090(9),c = 7.3318(5) ,V = 1991.9(2) 3,Cd4Cl4H2O7Se2,Mr = 863.38,Dc = 5.758 g/cm3,S = 1.075,μ(MoKα) = 16.820 mm-1,F(000) = 3088,R = 0.0427 and wR = 0.1220.Compound 1 features a 3-D structure with the cadmium atoms having two different coordination environments,i.e.,six-and eight-coordination geometries.Two different chain-like structures of cadmium-oxo polyhedra are interconnect to each other to give a 2-D layer of [Cd4(SeO3)2(H2O)]n4n+.Between the [Cd4(SeO3)2(H2O)]n4n+ layers is a novel chloride layer.A 3-D framework is constructed from these [Cd4(SeO3)2(H2O)]n4n+ layers linked by the chloride layers.  相似文献   

8.
Hydrothermal reactions of 1,2,4-triazole with zinc and cadmium salts have yielded 10 structurally unique materials of the M(II)/trz/Xn- system, with M(II)=Zn and Cd and Xn-=F-, Cl-, Br-, I-, OH-, NO3-, and SO(4)2- (trz=1,2,4-triazolate). Of the zinc-containing phases, [Zn(trz)2] (1), [Zn2(trz)3(OH)].3H2O (3.3H2O), and [Zn2(trz)(SO4)(OH)] (4) are three-dimensional, while [Zn(trz)Br] (2) is two-dimensional. All six cadmium phases, [Cd3(trz)3F2(H2O)].2.75H2O (5.2.75H2O), [Cd2(trz)2Cl2(H2O)] (6), [Cd3(trz)3Br3] (7), [Cd2(trz)3I] (8), [Cd3(trz)5(NO3)(H2O)].H2O (9.H2O), and [Cd8(trz)4(OH)2(SO4)5(H2O)] (10), are three-dimensional. In all cases, the anionic components Xn- participate in the framework connectivity as bridging ligands. The structural diversity of these materials is reflected in the variety of coordination polyhedra displayed by the metal sites: tetrahedral; trigonal bipyramidal; octahedral. Structures 3, 5, and 7-9 exhibit two distinct polyhedral building blocks. The materials are also characterized by a range of substructural components, including trinuclear and tetranuclear clusters, adamantoid cages, chains, layers, and complex frameworks.  相似文献   

9.
Seven cyanide-bridged bimetallic complexes have been synthesized by the reaction of [Fe(1-CH3im)(CN)5]2- with Mn(III) Schiff base complexes. Their crystal structure and magnetic properties have been characterized. Five complexes, [Mn2(5-Brsalen)2Fe(CN)5(1-CH3im)] x H2O (1), [Mn2(5-Clsalen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (2), [Mn2(5-Clsaltn)2(H2O)2Fe(CN)5(1-CH3im)] (3), [Mn2(5-Clsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (4), and [Mn2(5-Brsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x CH3OH (5), are neutral and trinuclear with two [Mn(SB)]+ (SB2- = Schiff base ligands) and one [Fe(1-CH3im)(CN)5]2-. Complex {[Et4N][Mn(acacen)Fe(CN)5(1-CH3im)]}n x 6nH2O (6) is one-dimensional with alternate [Mn(acacen)]+ and [Fe(CN)5(1-CH3im)]2- units. The two-dimensional complex {[Mn4(saltmen)4Fe(CN)5(1-CH3im)]}n[ClO4]2n x 9nH2O (7) consists of Mn4Fe units which are further connected by the phenoxo oxygen atoms. Magnetic studies show the presence of ferromagnetic Mn(III)-Fe(III) coupling in the trinuclear compounds with the magnetic coupling constant (J) ranging from 4.5 to 6.0 cm-1, based on the Hamiltonian H = -2JSFe(SMn(1) + SMn(2)). Antiferromagnetic interaction has been observed in complex 6, whereas ferromagnetic coupling occurs in complex 7. Complexes 6 and 7 exhibit long-range magnetic ordering with a TN value of 4.0 K for 6 and Tc of 4.8 K for 7. Complex 6 shows metamagnetic behavior at 2 K, and complex 7 possesses a hysteresis loop with a coercive field of 500 Oe, typical of a soft ferromagnet.  相似文献   

10.
Du M  Jiang XJ  Zhao XJ 《Inorganic chemistry》2006,45(10):3998-4006
A series of new metal-organic polymeric complexes, [[Co(bpt)(Htma)(H2O)3].2.25H2O]n (1), [Co(bpt)(Htma)(H2O)]n (2), [Ni(bpt)(Htma)(H2O)]n (3), [Zn(bpt)2(H2tma)2].6H2O (4), [[Cd(bpt)(Htma)(H2O)].(C2H5OH)(H2O)1.5]n (5), and [[Cd(bpt)(Htma)(H2O)2].5.5H2O]n (6), was prepared from solution reactions of 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole (bpt) and trimesic acid (H3tma) with different metal salts under diverse conditions. All these compounds were structurally determined by X-ray single-crystal diffraction, and the bulk new materials were further identified by X-ray powder diffraction. Complexes 1 and 6 show 1-D zigzag or linear Htma-bridged polymeric chains, with the terminal bpt ligands as pendants, which are extended to 2-D hydrogen-bonded arrays with 4.8(2) or (6,3) network topology. Coordination polymers 2 and 3, in which the 2-D corrugated metal-organic frameworks make the interdigitated 3-D packing, are isostructural. Complex 4 has a mononuclear structure, and its subunits are hydrogen-bonded to each other to give a 2-D grid-like net. For complex 5, the Cd(II) centers are linked by bpt/Htma ligands to form a 2-D (4,4) coordination layer, and these layers are interdigitated in pairs. Notably, secondary noncovalent forces, such as hydrogen bonds, play an important role in extending and stabilizing these structural topologies. Interestingly, distinct products are obtained for Co(II) (1 and 2) and Cd(II) (5 and 6) under ambient or hydrothermal conditions; however, for Ni(II) and Zn(II), single products, 3 and 4, are generated. The thermal stabilities of 1-6 were studied by thermogravimetric analysis of mass loss. The desorption/adsorption properties of the porous material 5 are also discussed. Solid-state luminescent spectra of the Zn(II) and Cd(II) complexes, 4-6, indicate intense fluorescent emissions at ca. 380 nm.  相似文献   

11.
WANG Jing  SU  Ting-Ting 《结构化学》2011,30(3):438-442
The hydrothermal reaction of Cd(OAc)2·2H2O, 4,4'-bpy and cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) yields a three-dimensional (3D) coordination porous framework [Cd2LI(4,4'-bpy)1.5(H2O)2]n·2nH2O, which was characterized by single-crystal X-ray diffraction (MoKα radiation, λ = 0.71073), elemental analysis and IR. This complex crystallizes in the monoclinic system, space group C2/c with a = 25.951(3), b = 11.6618(12), c = 20.046(2) , β = 114.863(2)o, V = 5504.4(10) 3, Z = 8, Dc = 1.900 g/cm3, Mr = 787.30, μ = 1.615 mm-1, F(000) = 3128, the final R = 0.0978 and wR = 0.1780. The structure of the complex is a 3D coordination Cd-carboxylate framework consisting of 1D hexagonal channels along the c-axis filled with the bridging 4,4'-bpy ligands. The 4,4'-bpy ligands with two kinds of conformations are located alternately in the channels through coordination and hydrogen interactions to support the whole porous framework, in which the conformation-flexible cyclohexane-1,2,4,5-tetracarboxylate ligand adopts the I (e,a,a,e) conformation and acts as a pentadentate ligand to connect five Cd(Ⅱ) atoms via the carboxylate groups in different coordination modes.  相似文献   

12.
The new copper(II) or copper(II)/sodium(I) 1D coordination polymers [Cu2(Hmdea)2(mu-H2O)(mu2-tpa)]n.2nH2O (1), [Cu2(H2tipa)2(mu2-ipa)]n.4nH2O (2), [Cu2(H2tea)2Na(H2O)2(mu2-tma)]n.6nH2O (3), [Cu2(H2tea)2(mu2-ipa)]n.nH2O (4a), and [Cu2(H2tea)2{mu3-Na(H2O)3}(mu3-ipa)]n(NO3)n.0.5nH2O (4b) have been prepared in aqueous medium by self-assembly from copper(II) nitrate, aminopolyalcohols [methyldiethanolamine (H2mdea), triisopropanolamine (H3tipa), and triethanolamine (H3tea)] as main chelating ligands and benzenepolycarboxylic acids [terephthalic (H2tpa), isophthalic (H2ipa), and trimesic (H3tma) acid] as spacers. They have been characterized by IR spectroscopy, elemental and single-crystal X-ray diffraction analyses, the latter indicating the formation of unusual multinuclear metal cores interconnected by various benzenepolycarboxylate spacers, leading to distinct wavelike, zigzag, or linear 1D polymeric metal-organic chains. These are further extended to 2D or 3D hydrogen-bonded supramolecular networks via extensive interactions with the intercalated crystallization water molecules. The latter are associated, also with aqua ligands, by hydrogen bonds resulting in acyclic (H2O)3 clusters in 1, (H2O)8 clusters in 2, infinite 1D water chains in 3, and disordered water-nitrate associates in 4b, all playing a key role in the structure stabilization and its extension to further dimensions. Variable-temperature magnetic susceptibility measurements have shown that 1-4 exhibit a moderately strong ferromagnetic coupling through the alkoxo bridge. The small Cu-O-Cu bridging angle and the large out-of-plane displacement of the carbon atom of the alkoxo group accounts for this behavior. The magnetic data have been analyzed by means of a dinuclear and a 1D chain model, and the magnetic parameters have been determined. The magnetic exchange coupling in 3, to our knowledge, is the highest found in alkoxo-bridged copper(II) complexes.  相似文献   

13.
A new metal-organic coordination polymer [Cd(5-hip)(phen)]n.nH2O 1 has beenhydro- ermally synthesized and characterized by elemental analysis, IR, TG and single-crystal X-raydiffraction.The crystal of the complex crystallizes in monoclinic, space group P2/n with a =8.8071(17), b =12.386(2), c = 16.981(3)(A),β= 100.182(2)°, V = 1823.2(6)(A),3, Mr= 490.73, Dc =1.788 g/cm3,μ(MoKa) = 1.240 mm-1, F(000) = 976, Z= 4, the final R = 0.0458 and wR = 0.1373 for 2864 observed reflections (I> 2σ(I)).The Cd atoms are coordinated by two N atoms from the phen ligands and four O atoms from 5-hydroxyisophthalate ligands in a highly distorted octahedral geometry.  相似文献   

14.
A series of tripodal imidazole frameworks (TIFs) are reported based on a tripodal, cavity-containing tris(imidazole) derivative. In the case of [Co(3)Cl(6)(1)(2)]·n(solvent) (TIF-1) which possesses a doubly interpenetrated framework structure, the material exhibits rigid, permanent porosity and selectively absorbs CO(2). The non-interpenetrated [Co(1)(2)(H(2)O)(2)]Cl(2)·4H(2)O (TIF-2) also absorbs gases and vapours fully reversibly exhibiting a reversible phase change in the process and considerable conditioning and hysteresis. The very highly hydrated [Co(1)(2)]Cl(2)·22H(2)O (TIF-3) irreversibly dehydrates to the layered structure [Co(1)(2)]Cl(2)·H(2)O (TIF-4). A nickel analogue [Ni(1)(2)]Cl(2)·22H(2)O (TIF-5) closely related to TIF-3 is also reported along with two isostructural, non-porous materials [MCl(2)(1)] (M = Mn, TIF-6; M = Cd, TIF-7) based on d(5) and d(10) Mn(II) and Cd(II). Some of the materials may be prepared by mechanochemical as well as solution based methods. We liken TIF-1 to a gas cylinder, TIF-2 to a sponge and TIF-3 to a fragile soda can that is crushed on emptying to give TIF-4.  相似文献   

15.
A new metal-organic coordination polymer [Cd(5-hip)(phen)]n·nH2O 1 has been hydro- ermally synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. The crystal of the complex crystallizes in monoclinic, space group P2/n with a = 8.8071(17), b =12.386(2), c = 16.981(3) A, β = 100.182(2)°, V = 1823.2(6) A^3, Mr=. 490.73, Dc =1.788 g/cm^3,μ(MoKa) = 1.240 mm^-1, F(000) = 976, Z= 4, the final R = 0.0458 and wR = 0.1373 for 2864 observed reflections (I 〉 2σ(I)). The Cd atoms are coordinated by two N atoms from the phen ligands and four O atoms from 5-hydroxyisophthalate ligands in a highly distorted octahedral geometry.  相似文献   

16.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

17.
Ten new chiral coordination polymers, namely, [Ni(L)(H(2)O)(2)] (1), [Co(L)(H(2)O)(2)] (2), [Cd(L)(H(2)O)] (3), [Cd(L)(phen)] (4), [Mn(2)(L)(2) (phen)(2)]·H(2)O (5), [Cd(2)(L)(2)(biim-4)(2)] (6), [Zn(2)(L)(2)(biim-4)(2)] (7), [Cd(L)(pbib)] (8), [Cd(L)(bbtz)] (9) and [Cd(L)(biim-6)] (10), where phen = 1,10-phenathroline, biim-4 = 1,1'-(1,4-butanediyl)bis(imidazole), pbib = 1,4-bis(imidazole-1-ylmethyl)benzene, bbtz = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, biim-6 = 1,1'-(1,6-hexanedidyl)bis(imidazole), and H(2)L = (R)-2-(4'-(4'-carboxybenzyloxy)phenoxy)propanoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra (IR), powder X-ray diffraction (PXRD), elemental analyses and thermogravimetric (TG) analyses. Compounds 1 and 2 exhibit similar 1D left-handed helical chains, which are further extended into 3D supramolecular structures through O-H···O hydrogen-bonding interactions, respectively. Compound 3 shows a 2D double-layer architecture containing helical chains. Compound 4 features two types of 2D undulated sheets with helical chains, which are stacked in an ABAB fashion along the c direction. Compound 5 possesses a 1D double chain ribbon structure containing unusual meso-helical chains, which is linked by π-π interactions into a 2D supramolecular layer. These layers are further extended by hydrogen-bonding interactions to form a 3D supramolecular assembly. Compounds 6 and 7 are isostructural and exhibit 2D (4(4))-sql networks with helical chains. Neighboring sheets are further linked by C-H···O hydrogen-bonding interactions to generate 3D supramolecular architectures. Compounds 8-10 are isostructural and display 3D 3-fold interpenetrating diamond frameworks with helical chains. The effects of coordination modes of L anions, metal ions and N-donor ligands on the structures of the coordination polymers have been discussed. The luminescent properties of 3, 4 and 6-10 have also been investigated in detail.  相似文献   

18.
HUANG Yan-Ju  NI Liang  DU Gang  WANG Lei 《结构化学》2010,29(12):1857-1863
Two unusual one-dimensional(1-D) compounds,viz.[Co(Medpq)(QUI)·H2O]2n· 2.4nH2O 1 and [Cd(Medpq)(QUI)·H2O]n·nH2O 2,were synthesized by the combination of two different metallic salts and organic ligands,namely 2,3-pyridinedicarboxylic acid(H2QUI) and 2-methyldipyrido[3,2-f:2',3'-h]quinoxaline(Medpq) ligand.The compounds were characterized by elemental analyses,TG,fluorescent emission and single-crystal X-ray diffraction analyses.  相似文献   

19.
The reaction of Ln(NO3)3.aq with K3[Cr(CN)6] and 2,2'-bipyridine (bpy) in a water/ethanol solution led to two families of complexes: 4 one-dimensional (1D) complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)3(bpy)2]n.4nH2O.3.5nbpy (Ln3+ = La, Ce, Pr, and Nd) and 10 1D complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)4(bpy)]n.3.5nH2O.1.5nbpy (Ln3+ = Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu). The structures for the fourteen complexes [LaCr]n (1), [CeCr]n (2), [PrCr]n (3), [NdCr]n (4), [NdCr]n (4'), [SmCr]n (5), [EuCr]n (6), [TbCr]n (7), [DyCr]n (8), [HoCr]n (9), [ErCr]n (10), [TmCr]n (11), [YbCr]n (12), and [LuCr]n (13) have been solved. Complexes 1-4 crystallize in the orthorhombic space group Pbam and are isomorphous; complexes 4'-13 crystallize in the triclinic space group PI and are isomorphous. The X-ray structural characterization of complexes 1-4 shows the presence of a discrete decameric water cluster built around a cyclic hexameric core stabilized by the solid-state structure, which represents another new mode of association of water molecules. The Ln3+-Cr3+ magnetic interaction is negligible in 6 and 12, antiferromagnetic in 2, 4', 7, 8, 9, 10, and 11, and unresolved for 3. The complex 5 is a ferrimagnet because its magnetic studies suggest the onset of a very weak ferromagnetic three-dimensional ordering.  相似文献   

20.
To study the conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H(6)L), eleven new coordination polymers have been isolated from hydrothermal reactions of different metal salts with 1e,2a,3e,4a,5e,6a-cyclohexanehexacarboxylic acid (3e+3a, H(6)L(I)) and characterized. They are [Cd(12)(mu(6)-L(II))(mu(10)-L(II))(3)(mu-H(2)O)(6)(H(2)O)(6)]16.5 H(2)O (1), Na(12)[Cd(6)(mu(6)-L(II))(mu(6)-L(III))(3)]27 H(2)O (2), [Cd(3)(mu(13)-L(II))(mu-H(2)O)] (3), [Cd(3)(mu(6)-L(III))(2,2'-bpy)(3)(H(2)O)(3)]2 H(2)O (4), [Cd(4)(mu(4)-L(VI))(2)(4,4'-Hbpy)(4)(4,4'-bpy)(2)(H(2)O)(4)]9.5 H(2)O (5), [Cd(2)(mu(6)-L(II))(4,4'-Hbpy)(2)(H(2)O)(10)]5 H(2)O (6), [Cd(3)(mu(11)-L(VI))(H(2)O)(3)] (7), [M(3)(mu(9)-L(II))(H(2)O)(6)] (M=Mn (8), Fe (9), and Ni (10)), and [Ni(4)(OH)(2)(mu(10)-L(II))(4,4'-bpy)(H(2)O)(4)]6 H(2)O (11). Three new conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylate, 6e (L(II)), 4e+2a (L(III)) and 5e+1a (L(VI)), have been derived from the conformational conversions of L(I) and trapped in these complexes by controlling the conditions of the hydrothermal systems. Complexes 1 and 2 have three-dimensional (3D) coordination frameworks with nanoscale cages and are obtained at relatively low temperatures. A quarter of the L(I) ligands undergo a conformational transformation into L(II) while the others are transformed into L(III) in the presence of NaOH in 2, while all of the L(I) are transformed into L(II) in the absence of NaOH in 1. Complex 3 has a 3D condensed coordination framework, which was obtained under similar reaction conditions as 1, but at a higher temperature. The addition of 2,2'-bipyridine (2,2'-bpy) or 4,4'-bipyridine (4,4'-bpy) to the hydrothermal system as an auxiliary ligand also induces the conformational transformation of H(6)L(I). A new L(VI) conformation has been trapped in complexes 4-7 under different conditions. Complex 4 has a 3D microporous supramolecular network constructed from a 2D L(III)-bridged coordination layer structure by pi-pi interactions between the chelating 2,2'-bpy ligands. Complexes 5-7 have different frameworks with L(II)/L(VI) conformations, which were prepared by using different amounts of 4,4'-bpy under similar synthetic conditions. Both 5 and 7 are 3D coordination frameworks involving the L(VI) ligands, while 6 has a 3D microporous supramolecular network constructed from a 2D L(II)-bridged coordination layer structure by interlayer N(4,4'-Hbpy)--HO(L(II)) hydrogen bonds. 3D coordination frameworks 8-11 have been obtained from the H(6)L(I) ligand and the paramagnetic metal ions Mn(II), Fe(II), and Ni(II), and their magnetic properties have been studied. Of particular interest to us is that two copper coordination polymers of the formulae [{Cu(II) (2)(mu(4)-L(II))(H(2)O)(4)}{Cu(I) (2)(4,4'-bpy)(2)}] (12 alpha) and [Cu(II)(Hbtc)(4,4'-bpy)(H(2)O)]3 H(2)O (H(3)btc=1,3,5-benzenetricarboxylic acid) (12 beta) resulted from the same one-pot hydrothermal reaction of Cu(NO(3))(2), H(6)L(I), 4,4'-bpy, and NaOH. The Hbtc(2-) ligand in 12 beta was formed by the in situ decarboxylation of H(6)L(I). The observed decarboxylation of the H(6)L(I) ligand to H(3)btc may serve as a helpful indicator in studying the conformational transformation mechanism between H(6)L(I) and L(II-VI). Trapping various conformations in metal-organic structures may be helpful for the stabilization and separation of various conformations of the H(6)L ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号