首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface-enhanced Raman scattering (SERS) has established itself as an important analytical technique. However, efforts to transfer the technology from the laboratory to the production line, clinic or field have been frustrated by the lack of robust affordable substrates and the complexity of interfacing between sample and spectrometer. Prompted by the success of optical fibre systems for implementing normal Raman scattering spectroscopy in remote locations and biomedical applications, attention has now shifted to the development of SERS-active optical fibres. Other workers have attempted to develop SERS probes with extended interaction lengths and both far-field and near-field SERS imaging techniques for high-resolution chemical mapping of surfaces. This review discusses the development of these technologies and presents the current state of the art. Although recent developments show great promise, some outstanding challenges and opportunities remain to be addressed.  相似文献   

2.
In this paper, we describe a surface-enhanced Raman scattering (SERS)-based detection approach, referred to as “molecular sentinel” (MS) plasmonic nanoprobes, to detect an RNA target related to viral infection. The MS method is essentially a label-free technique incorporating the SERS effect modulation scheme associated with silver nanoparticles and Raman dye-labeled DNA hairpin probes. Hybridization with target sequences opens the hairpin and spatially separates the Raman label from the silver surface thus reducing the SERS signal of the label. Herein, we have developed a MS nanoprobe to detect the human radical S-adenosyl methionine domain containing 2 (RSAD2) RNA target as a model system for method demonstration. The human RSAD2 gene has recently emerged as a novel host-response biomarker for diagnosis of respiratory infections. Our results showed that the RSAD2 MS nanoprobes exhibits high specificity and can detect as low as 1 nM target sequences. With the use of a portable Raman spectrometer and total RNA samples, we have also demonstrated for the first time the potential of the MS nanoprobe technology for detection of host-response RNA biomarkers for infectious disease diagnostics.  相似文献   

3.
The influence of dielectric substrates on the Raman scattering activities of Ag overlayers has been investigated. Materials with low refractive indices, such as SiO2, SiOx and AlF3, were found to provide suitable supporting platforms for Ag films to give strong surface-enhanced Raman scattering for dye molecules when illuminated at 488 nm. This finding was then extended to tip-enhanced Raman scattering (TERS). Huge enhancements of 70–80×, corresponding to net enhancements of >104, were observed for brilliant cresyl blue test analyte when Ag-coated tips made from or precoated with low refractive index materials were applied. The yield of fabricated tips that significantly enhance the Raman signals was found to be close to 100%. These findings provide crucial steps towards the use of TERS as a robust technique for rapid chemical imaging with nanometer spatial resolution. Figure Silver-coated dielectric tips for tip-enhanced Raman scattering (TERS) are capable of more than 10,000-fold enhancement  相似文献   

4.
Surface-enhanced Raman scattering (SERS) provides vibrational information about molecules that are located within several nanometers of the surface of a metallic nanoparticle. This review describes the various challenges and successes of applying SERS inside living cells in order to gain information about the internal structure and dynamic processes occurring in the intracellular matrix. In particular, the challenges associated with the introduction of metal nanoparticles into cells are described, as well as the complexity of interpreting SERS spectra from within complex biological environments. Strategies for understanding and improving the specificity of SERS in vivo are also presented.
Katherine A. WilletsEmail:
  相似文献   

5.
Practical applications of chemical and biological detections through surface-enhanced Raman scattering (SERS) require high reproducibility, sensitivity, and efficiency, along with low-cost, straightforward fabrication. In this work, we integrated a poly-(dimethylsiloxane) (PDMS) chip with quasi-3D gold plasmonic nanostructure arrays (Q3D-PNAs), which serve as SERS-active substrates, into an optofluidic microsystem for online sensitive and reproducible SERS detections. The Q3D-PNA PDMS chip was fabricated through soft lithography to ensure both precision and low-cost fabrication. The optimal dimension of the Q3D-PNA in PDMS was designed using finite-difference time-domain (FDTD) electromagnetic simulations with a simulated enhancement factor (EF) of 1.6 × 106. The real-time monitoring capability of the SERS-based optofluidic microsystem was investigated by kinetic on/off experiments through alternatively flowing Rhodamine 6G (R6G) and ethanol in the microfluidic channel. A switch-off time of ∼2 min at a flow rate of 0.3 mL min−1 was demonstrated. When applied to the detection of low concentration malathion, the SERS-based optofluidic microsystem with Q3D-PNAs showed high reproducibility, significantly improved efficiency and higher detection sensitivity via increasing the flow rate. The optofluidic microsystem presented in this paper offers a simple and low-cost approach for online, label-free chemical and biological analysis and sensing with high sensitivity, reproducibility, efficiency, and molecular specificity.  相似文献   

6.
表面增强拉曼光谱检测联苯胺   总被引:2,自引:0,他引:2  
采用柠檬酸钠还原法制备了具有表面增强拉曼散射(SERS)活性的银纳米溶胶, 利用透射电子显微镜、 扫描电子显微镜和紫外-可见光谱仪对银纳米溶胶进行了表征. 对水相的联苯胺进行了SERS研究, 并对联苯胺的拉曼谱带进行了归属. 考察了团聚剂氯化镁的浓度对检测的影响, 发现随着氯化镁浓度的变大, SERS信号呈现出先增大后减弱的趋势, 即氯化镁的浓度存在一个最佳值, 此时联苯胺的检测限可达到10-8 mol/L.  相似文献   

7.
The electrochemical interaction of thiourea with a copper electrode in sulphuric acid solution was investigated using Fourier transform Raman and in situ surface-enhanced Raman scattering (SERS) spectroscopy. SERS spectra of thiourea at a copper electrode were obtained in solutions containing greater than 5 ppm thiourea; the spectra obtained were consistent with adsorption of the molecule on the copper electrode via the sulphur atom. The SERS spectra provide evidence of complex formation involving thiourea and sulphate species at the electrode surface.  相似文献   

8.
Time-resolved surface-enhanced Raman scattering (SERS) was applied to study the response of Raman bands from 4-cyanopyridine (PyCN) adsorbed on a Ag electrode to variation of the potential; the temporal resolution was 0.1 s. The response of the SERS signals of PyCN was instantaneous to the oxidation potential of Ag electrode. However, delay of the SERS signals was observed while AgCl was reducing. The decay and growth of the SERS bands look place within 1 s in the cases of desorption and adsorption of PyCN on the electrode. It took much longer for PyCN to alter from one adsorption geometry to another on the electrode.  相似文献   

9.
Surface enhancement mechanism of Raman scattering from molecules adsorbed on silver oxide colloids is reported. Absorption spectra and Raman spectra of the cyanine dye D266 and pyridine molecules adsorbed on Ag2O colloids, and the influences of S2O32− and OH on the SERS are studied respectively. The results indicate that ‘chemical' enhancement is dominant in Ag2O colloidal solution. Surface complexes of adsorbed molecules and small silver ion clusters Agn+ as the SERS active sites make an important contribution to surface enhanced Raman scattering (SERS). At these active sites, charge transfer between the adsorbed molecules and the small silver ion clusters is the main enhancement origin. The enhancement factor of D266 adsorbed on Ag2O colloids is theoretically estimated with the excited-state charge transfer model, which is roughly in accordance with the experiments.  相似文献   

10.
细菌是一种与人类生命活动息息相关的微生物,其快速、高灵敏检测对重大传染性疾病的防控至关重要.本文介绍了拉曼光谱用于细菌检测的基本原理,综述了3种拉曼光谱用于细菌检测的主要方式,包括细菌组成成分检测、细菌代谢物检测以及基于拉曼探针标记的检测模式,并对各种拉曼检测方法进行了分析比较.最后,展望了拉曼光谱在细菌检测领域的发展前景,并提出了5条建议.  相似文献   

11.
Understanding the chemical composition of biofilm matrices is vital in different fields of biology such as surgery, dental medicine, synthetic grafts and bioremediation. The knowledge of biofilm development, composition, active reduction sites and remediation efficacy will help in the development of effective solutions and evaluation of remediating approaches prior to implementation. Surface-enhanced Raman spectroscopy (SERS) based imaging is an invaluable tool to obtain an understanding of the remediating efficacy of microorganisms and its role in the formation of organic and inorganic compounds in biofilms. We demonstrate for the first time, the presence of chromate, sulfate, nitrate and reduced trivalent chromium in soil biofilms. In addition, we demonstrate that SERS imaging was able to validate two observations made by previous studies on chromate/sulfate and chromate/nitrate interactions in Shewanella oneidensis MR-1 biofilms. Additionally, we show a detailed Raman mapping based evidence of the existence of chromate–sulfate competition for cellular entry. Subsequently, we use Raman mapping to study the effect of nitrate on chromate reduction. The findings presented in this paper are among the first to report – detection of multiple metallic ions in bacterial biofilms using intracellular SERS substrates. Such a detailed characterization of biofilms using gold nanoislands based SERS mapping substrate can be extended to study cellular localization of other metallic ions and chemical species of biological and toxicological significance and their effect on reduction reactions in bacterial biofilms.  相似文献   

12.
Surface-enhanced Raman scattering was used as a spectroscopic tool to investigate the changes brought upon cytochrome P450BSß after fatty acid binding. Differences in the spectra of substrate-free and substrate-bound enzyme were observed indicating the potential for this method to be used in the screening of P450 substrates. In particular, the binding characteristics of myristic acid, an inherent substrate, and hydroxylauric acid, a product of fatty acid oxidation, towards P450BSß in the presence of H2O2 were investigated. Specific spectral changes could be assigned to changes in the heme environment only for myristic acid, indicating an occurrence of oxidation process characteristic for the enzymatic substrate.  相似文献   

13.
New types of microfabricated surface‐enhanced Raman spectroscopy (SERS) active substrates produced by electron beam lithography and ion beam etching are introduced. In order to achieve large enhancement factors by using the lightning rod effect, we prepare arrays consisting of sharp‐edged nanostructures instead of the commonly used dots. Two experimental methods are used for fabrication: a one‐stage process, leading to gold nanostar arrays and a two‐stage process, leading to gold nanodiamond arrays. Our preparation process guarantees high reproducibility. The substrates contain a number of arrays for practical applications, each 200×200 μm2 in size. To test the SERS activity of these nanostar and nanodiamond arrays, a monolayer of the dye crystal violet is used. Enhancement factors are estimated to be at least 130 for the nanodiamond and 310 for the nanostar arrays.  相似文献   

14.
《Analytical letters》2012,45(16):2682-2690
This paper describes the development of a portable microfluidic chip based on a surface-enhanced Raman spectroscopy (SERS) sensor for crystal violet analysis. A Y-shape microfluidic chip with a staggered herringbone structure was designed to efficiently mix the analyte and SERS active silver colloid. The subsequent detection of the analyte was performed on the microfluidic chip by a portable Raman system. Compared with other methods, this sensor is easy to operate and is expected to have applications for rapid and sensitive on-site analysis. A good linear correlation over the concentration range of 10 to 750 nM of crystal violet with a correlation coefficient of 0.992 was obtained. The recovery was between 98.6% and 102.9% for crystal violet in river water with relative standard deviations between 2.43% and 4.26%.  相似文献   

15.
Sulfamethoxazole (SMX) is a commonly applied antibiotic for treating urinary tract infections; however, allergic reactions and skin eczema are known side effects that are observed for all sulfonamides. Today, this molecule is present in drinking and surface water sources. The allowed concentration in tap water is 2·10−7 mol L−1. SMX could unintentionally be ingested by healthy people when drinking contaminated tap water, representing unnecessary drug intake. To assess the quality of tap water, fast, specific and sensitive detection methods are required, in which consequence measures for improving the purification of water might be initiated in the short term. Herein, the quantitative detection of SMX down to environmentally and physiologically relevant concentrations in the nanomolar range by employing surface-enhanced Raman spectroscopy (SERS) and a microfluidic cartridge system is presented. By applying surface-water samples as matrices, the detection of SMX down to 2.2·10−9 mol L−1 is achieved, which illustrates the great potential of our proposed method in environmental science.  相似文献   

16.
In this study, the adsorption orientation for 2-mercaptobenzothiazole (MBT) and 2-mercaptobenzoxazole (MBO) on to silver mirror and silver sol substrates have been studied by surface enhanced Raman scattering (SERS). The MBT and MBO were chemisorbed on both silver mirror and silver sol after deprotonation with a tilted orientation to the silver surfaces. The surface enhanced properties of MBT and MBO showed that the substrate of silver mirror was superior to the sliver sol. The SERS spectra of MBT and MBO revealed that both of the MBT and MBO were adsorbed on silver surfaces strongly by a common sulfur molecule and a sulfur atom from MBT and an oxygen atom from MBO. Therefore, the adsorption orientation of MBT and MBO was little tilted perpendicularly to the silver surfaces. The adsorption geometry did not undergo any significant changes in acidic and basic solutions. It showed that the adsorption orientation for MBT and MBO were stable in the both solutions.  相似文献   

17.
18.
Surface-enhanced Raman scattering (SERS) has become an integral part of spectroscopy. The inelastic scattering process is enhanced by several orders of magnitude when molecules are in close contact to nano-structured coin metals. However, the use of surface enhancement in combination with nonlinear spectroscopy is by far not as common as in linear spectroscopy even though a more drastic effect could be expected. In our work, we report the observations we made from the preliminary studies on surface enhancement mechanisms in combination with coherent anti-Stokes Raman scattering (CARS) using femtosecond laser pulses. Silver colloids were used as enhancement medium. Molecules, which show conventional SERS were selected for the experiments. Femtosecond CARS was performed on these molecular systems in the presence and absence of silver colloids. The scattered CARS signal was collected both in the forward and sideward directions. From the analysis of the results general observations were made about the factors affecting the performance of SE-CARS.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) is a potent tool in bioanalytical science because the technique combines high sensitivity with molecular specificity. However, the widespread and routine use of SERS in quantitative biomedical diagnostics is limited by tight requirements on the reproducibility of the noble metal substrates used. To solve this problem, we recently introduced a novel approach to reproducible SERS substrates. In this contribution, we apply ultrafast time-resolved spectroscopy to investigate the photo-induced collective charge-carrier dynamics in such substrates, which represents the fundamental origin of the SERS mechanism. The ultrafast experiments are accompanied by scanning-near field optical microscopy and SERS experiments to correlate the appearance of plasmon dynamics with the resultant evanescent field distribution and the analytically relevant SERS enhancement. Figure Ultrafast time-resolved differential absorption spectroscopy combined with scanning near-field optical microscopy (left) and atomic force microscopy (right) yields insight into the photoinduced charge-carrier dynamics in innovative reproducible SERS-substrates Dana Cialla and Ronald Siebert contributed equally to this work.  相似文献   

20.
The adsorption and faradaic processes of formylferrocene thiosemicarbazone (TFF) on gold electrode in 0.1 mol L−1 NaClO4 acetonitrile solution were monitored by surface-enhanced Raman scattering (SERS) and ultraviolet-visible (UV-VIS) techniques. SERS data indicate that TFF adsorbs through the iminic N(2′) and S atoms on the gold electrode. The reduction product formed on the gold surface was aminomethylferrocene, whose experimental spectrum was supported by density functional theory calculations. In solution, thiourea was detected by the UV-VIS technique. Although there was an oxidation wave in the TFF cyclic voltammogram, no spectral changes were observed after the oxidation process. This work is dedicated to the memory of Prof. Francisco C. Nart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号