首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance Raman spectra are obtained when the wave number of the exciting radiation is close to, or coincident with, that of an electronic transition of the scattering species. Such spectra are usually characterized by a very large enhancement of the intensities of particular Raman bands, sometimes with the appearance of intense overtone and combination tone progressions. The technique provides detailed information about excited electronic states because it is only the vibrational modes associated with the chromophore that are resonance-Raman active. Additionally, the high sensitivity is such that compounds at concentrations as low as 10?6 mol/L may be detected, enabling resonance Raman spectroscopy to be used as an analytical tool and for the study of chromophores in molecules of biological interest.  相似文献   

2.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

3.
Detection of the sulfhydryl group in proteins has previously been difficult. However, the group can be detected quite easily by Raman spectroscopy due to its distinct vibrational band at 2560-2580 cm?1 region. This region is free of interference from other vibrational bands of protein. Detection of SH in tobacco mosaic virus coat protein and two sea snake neurotoxins was made to illustrate the application of Raman spectroscopy.  相似文献   

4.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations.  相似文献   

5.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

6.
We employ Raman spectroscopy to characterize several microstructural aspects of a family of ethylene-propylene copolymers (EPC). Focus is made on the simultaneous analysis of crystallinity and chemical composition. A curve fitting procedure is used to isolate Raman bands ascribed to polypropylene chains in the crystal lattice from contributions of the amorphous phase. Crystal contents of EPC calculated on this basis are in the range 10–34 wt%, in good agreement with independent wide angle x-ray diffraction and differential scanning calorimetry measurements. Besides, Raman spectroscopy captures in some of the samples a mixed crystalline structure with both, polyethylene and polypropylene crystals, indicating a distinctive molecular architecture. The chemical composition of EPC is obtained from Raman spectra in the melt state to decouple peaks characteristics of the crystal lattice from fundamental vibrational modes of the polymer chain. EPC present ethylene contents in the range 5–26 mol%, in good agreement with parallel results from 13C nuclear magnetic resonance analysis. Remarkably, a rather complete characterization of EPC can be achieved on the base of a single experimental technique.  相似文献   

7.
A dense silica glass was prepared by consolidating a highly dispersed silicic acid powder (particle size <10 nm) with the Spark Plasma Sintering (SPS) technique. The glass was characterized by ellipsometry, transmission electron microscopy (TEM), infrared reflectance and transmittance spectroscopy, as well as by Raman, UV-Vis-NIR and solid-state nuclear magnetic resonance (NMR) spectroscopy. The prototypic sample showed a transmittance of about 63% compared to silica glass in the UV-Vis spectral range. Based on the results of infrared transmittance spectroscopy this lower transparency is due to the comparably high water content, which is about 40 times higher than that in silica glass. 1H magic-angle spinning (MAS) NMR confirmed an increase in hydroxyl groups in the sample prepared by SPS relative to that of the conventional SiO2 reference glass. Aside from the comparably high water content, we conclude from the similarity of the IR-reflectance and the 29Si MAS NMR spectra of the SPS sample and the corresponding spectra of the conventionally prepared silica glass, that the short- and medium-range order is virtually the same in both materials. Raman spectroscopy, however, suggests that the number of three- and four-membered rings is significantly smaller in the SPS sample compared to the conventionally prepared sample. Based on these results we conclude that it is possible to prepare glasses by compacting amorphous powders by the SPS process. The SPS process may therefore enable the preparation of glasses with compositions inaccessible by conventional methods.  相似文献   

8.
表面增强拉曼光谱:应用和发展   总被引:2,自引:0,他引:2  
表面增强拉曼光谱技术(Surface-enhanced Raman spectroscopy,SERS)是一种具有超高灵敏度的指纹光谱技术,目前已广泛应用于表面科学、材料科学、生物医学、药物分析、食品安全、环境检测等领域,是一种极具潜力的痕量分析技术。 本文对SERS技术及相关的针尖增强拉曼光谱(Tip-enhanced Raman spectroscopy,TERS),壳层隔绝纳米粒子增强拉曼光谱(Shell-isolated nanoparticle-enhanced Raman spectroscopy,SHINERS)技术的发展及应用进行了综合评述,并探讨了其未来的研究热点及发展方向。  相似文献   

9.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

10.
The undoped and Mg-doped ZnO ceramics have been successfully synthesized using the conventional solid state sintering method. The doping effect of MgO content on the structural properties of ZnO/MgO composites has been investigated by X-ray diffraction (XRD) and Raman spectroscopy. The XRD patterns reveal that all the samples are polycrystalline and have a prominent hexagonal crystalline structure with (002) and (101) as preferred growth directions. The formation of the hexagonal ZnMgO alloy phase and the segregation of MgO-cubic phase took place for an MgO composition x  20 wt%. This finding is in good agreement with the Raman spectroscopy measurements which prove the existence of multiple-order Raman peaks originating from ZnO-like and MgO phonons. The band gap energy and the carrier concentration of ZnO pellets were found to be dependent upon the Mg doping whose values vary from 3.287 to 3.827 eV and from 1.6 × 1017 to 5.2 × 1020 cm−3, respectively.  相似文献   

11.
This paper describes a study of a cerium–5 wt.% lanthanum (Ce–5 wt.% La) alloy using Raman spectroscopy and X-ray diffraction (XRD). Examination of the alloy microstructure by optical microscopy and Raman spectroscopy revealed the presence of inclusions which were identified as cerium oxide (CeO2). The study also highlighted the need to avoid excessive laser power during acquisition of the Raman spectra as this appeared to cause the oxidation of the region being analysed where previously no cerium oxide peak had been detected. The propensity of cerium to oxidise in air results in the formation of a CeO2 layer on the surface of the alloy. Raman spectroscopy of the oxide layer formed on the alloy after exposure to air for 21 days found that the Raman peak denoting cerium oxide was seen at between 5 and 7 cm−1 lower than the value for CeO2 (465 cm−1). This is attributed to a combination of a sub-stoichiometric oxide layer and the presence of La in the alloy.  相似文献   

12.
Raman spectorscopy is—like infrared spectroscopy—a method for the study of vibrations of molecules and crystals. The two methods are complementary: if a vibration results in a change of the polarizability of a molecule, it is Raman active; if a change in the molecular dipole moment results, it is infrared active Vibrations of nonpolar groups and totally symmetrical vibrations of molecules are often only Raman active. IR and Raman spectra together give information about the symmetries and structures of molecules and crystals and about the properties of chemical bonds and intermolecular interactions. Until about 10 years ago Raman spectra could only be recorded on relatively large amounts of essentially colorless substances. After the advent of laser light sources the situation changed completely. The amount of sample substance required is now in the region of milli- and micrograms. Gases, liquids and solid samples, especially air-sensitive and reactive substances, single crystals, crystal needles and filaments as well as aqueous solutions can be readily investigated. The identification of molecules and the elucidation of molecular structures, biochemical analysis, and control of evnivornmental pollution are important aplications of Raman spectroscopy. Raman spectroscopy now constitutes an additional powerful tool in instrumental analysis  相似文献   

13.
Tear fluid is a complex aqueous solution containing proteins, metabolites, electrolytes and lipids. This study uses Raman spectroscopy to analyse the composition of human tear fluid from three healthy volunteers. Two different methods are used to obtain Raman spectra from the 3 μL tear samples: (i) solution-phase Raman spectroscopy, and (ii) drop coating deposition Raman spectroscopy (DCDRS). Tear samples were either basal fluid, or yawn reflex secreted fluid. Calibration of the solution technique with standard protein solutions (5-15 mg mL−1) showed that this method could predict the protein concentration (cross-validation) with an error of less than 1 mg mL−1. The Raman signals from the tear fluid were very weak but signals due to protein and urea were clearly observable in all samples. The drop coating deposition technique was shown to produce very high signal-to-noise spectra for relatively short acquisition times, and small sample volumes. Raman point mapping combined with principal components analysis showed that the protein, urea, bicarbonate and lipid could all be detected in the tear samples and that the distribution of these components was inhomogeneous. Their position within the drying pattern was shown to depend on their relative solubilities. The results of this study suggest that solution Raman measurements may be calibrated to give the total tear protein concentration and DCDRS could be used to give a fingerprint of the tear protein (and lipid) composition.  相似文献   

14.
Hydrozincite and smithsonite were synthesised by controlling the partial pressure of CO2. Previous crystallographic studies concluded that the structure of hydrozincite was a simple one. However both Raman and infrared spectroscopy show that this conclusion is questionable. Multiple bands are observed in both the Raman and infrared spectra in the (CO3)2− antisymmetric stretching and bending regions of hydrozincite showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the hydrozincite structure. Multiple OH stretching vibrations centred in both the Raman and infrared spectra show that the OH units in the hydrozincite structure are non-equivalent. The Raman spectrum of synthetic smithsonite is a simple spectrum characteristic of carbonate with Raman bands observed at 1408, 1092 and 730 cm−1.  相似文献   

15.
In this study, we compare near-infrared (NIR) and Raman spectroscopy for the determination of the density of linear low density polyethylene (PE) (in a pellet form). As generally known, Raman spectral features are more selective than those of NIR for most chemical samples. NIR spectroscopy has been more extensively used for the quantitative analysis of polymers, but Raman spectroscopy is the better choice as long as the problem of reproducibility of Raman measurements (especially for solid samples), mostly resulting from insufficient sample representation due to probing only localized chemical information and the sensitivity of sample placement with regard to the focal plane, can be overcome. To improve sample representation and reproducibility of Raman measurements, we have employed the wide area illumination (WAI) Raman scheme, capable of illuminating a laser onto a large sample area (28.3 mm2) for Raman spectral collection (a 6-mm laser spot with a focal length of 248 mm). Diffuse reflectance NIR spectra of PE pellets were collected using a sample moving system which allowed for the scanning of large areas. The prediction error was 0.0008 g cm−3 for Raman spectroscopy and 0.0011 g cm−3 for NIR spectroscopy. The harmonization of inherently selective Raman features and a reproducible spectral collection with correct sample representations using the WAI scheme led to an accurate determination of the density of the PE pellets.  相似文献   

16.
Mesoporous hexagonally ordered SiO2 (SBA‐15) with a pore diameter of 7 nm was used as a host matrix for nanoparticles of amorphous and crystalline germanium. Raman spectra were recorded for these germanium nanoparticles and for bulk amorphous and crystalline germanium powder. The band shifts and line shapes of the Raman bands for the optical phonon at ~300 cm—1 were analyzed and compared to the theoretical predictions derived from the phonon confinement model. In addition, the microstructure of amorphous hydrogenated germanium could be further elucidated by Raman spectroscopy and by thermal analysis.  相似文献   

17.
Melamine adulteration of food and pharmaceutical products is a major concern and there is a growing need to protect the public from exposure to contaminated or adulterated products. One approach to reduce this threat is to develop a portable method for on-site rapid testing. We describe a universal and selective method for the detection of melamine in a variety of solid matrices at the 100–200 μg L−1 level by surface enhanced Raman spectroscopy (SERS) with gold nanoparticles. With minimal sample preparation and the use of a portable Raman spectrometer, this work will lead to field-based screening for melamine adulteration. Citrate coated gold nanoparticles (Au NPs) were investigated for both colorimetric and Raman-based responses. Several non-hazardous solvents were evaluated in order to develop a melamine extraction procedure safe for field applications. Au NP agglomerates formed by the addition of isopropanol (IPA) prior to sample introduction enhanced the Raman signal for melamine and eliminated matrix interference for substrate formation. The melamine Raman signal resulted in a 105 enhancement through the use of Au NP agglomerates. To our knowledge, we have developed the first portable SERS method using Au NPs to selectively screen for the presence of melamine adulteration in a variety of food and pharmaceutical matrices, including milk powder, infant formula, lactose, povidone, whey protein, wheat bran and wheat gluten.  相似文献   

18.
采用拉曼光谱技术,对SO2溶于水和酸性溶液的化学状态进行了研究。测定出SO2的特征拉曼光谱(1147 cm-1),表明SO2是以SO2·nH2O形式存在于水和酸性溶液里。  相似文献   

19.
Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50–700 cm−1 were identified based on group theory. The symmetries of the high order Raman modes in 900–1500 cm−1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400–700 cm−1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.  相似文献   

20.
The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported. Figure Light scattering apparatus used to detect bacteria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号