首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
丙酮酸分子结构与振动光谱的密度泛函理论研究   总被引:1,自引:0,他引:1  
用密度泛函方法BLYP、B3LYP和从头算Hartree-Fock(HF)方法在6-31G*基组水平上对丙酮酸分子的几何结构(甲基的重叠式和交错式两种构象)和振动光谱分别进行了优化和计算,并给出了各种频率所对应的红外强度及拉曼活性,对光谱进行了指认。结果表明:在丙酮酸分子的两种构象中,重叠式比较稳定*B3LYP计算得到的构型参数与实验结果比较一致;在振动频率的计算中,BLYP未标度力场所计算的非CH3伸缩振动基频预测值和实验值的平均绝对偏差为10.4cm-1;而HF标度力场的平均绝对偏差为17.9cm-1。说明两者的结果与实验观测频率比较吻合,但B3LYP的频率计算值偏差(38.3cm-1)较大。根据振动频率的势能分布和红外光谱强度对此分子的振动基频进行了理论归属。  相似文献   

2.
Anumberoftheoreticalstudiesexistforpyruvicacid.IthasbeenstudiedatthesemiempiricalINDOandAMIlevell'2.AttheahinitiolevelstudiesofpyruvicacidrangefromthecalculationofenergiesattheSTO-3Glevel'tocalculationsofenergiesusingtheHF/3-2iG',HF/4-21G',HF/6-3iG*andMP2/4-21Gmethods.ExceptforthestudyofMurtoetal.,allthestudieshavefocussedontheenergiesandgeometriesofpyruvicacid.Moreoveralltheexistingtheoreticalstudieshavefocusedtheirattentionontheorientationofthecarboxylhydrogenextensively.Theorienta…  相似文献   

3.
The molecular structure, conformafional stability, and vibrational frequencies of ten-butyl N-(2- bromocyclohex-2-enyl)-N-(2-furylmethyl)carbamate (TBBFC) were investigated by utilizing the Hartree-Fock (HF) and density functional theory (DFT) ab initio calculations with 6-31G ^* and 6-31G^* * basis sets. The optimized bond length and angle values obtained by HF method showed the best agreement with the experimental values. Comparison of the observed and calculated fundamental vibrational frequencies indicated that B3LYP was superior to the scaled HF approach for molecular problems. Optimal uniform scaling factors calculated for the title compound are 0.899/0.904, 0.958/0.961, and 0.988/0.989 for HF, B3LYP, and BLYP (6-31G ^*/6-31G ^* *), respectively.  相似文献   

4.
薛英  郭勇  徐学军  谢代前  鄢国森 《化学学报》2000,58(10):1254-1258
用多种密度泛函理论(DFT)方法(BLYP/6-31G^*^*,B3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)对吲哚分子的平衡几何构型进行了优化。在优化构型的基础上计算了吲哚分子的谐力场、振动基频和红外光谱强度。计算得到的振动频率与实验值比较平均偏差对四种计算方法(BLYP/6-31G^*^*,P3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)分别为16.3,40.5,45.1和26.4cm^-^1。BLYP/6-31G^*^*理论力场被用于吲哚分子的简正坐标分析计算中。根据振动率的势能分布(PEDs)对此分子的振动基频进行了理论归属。  相似文献   

5.
Density functional theory (DFT) calculations using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functionals (BLYP), Becke's three-parameter hybrid DFT/HF method using Lee-Yang-Parr's correlation functionals (B3LYP) and ab initio Hartree-Fock (HF) method have been carried out to investigate the structure and vibrational spectra of acridine and phenazine. Structural parameters obtained by B3LYP/6-31G* geometry optimization are in good agreement with available experimental data. The raw BLYP non-CH stretching frequencies approximate the experimental results much better than the HF results with the mean absolute deviation about 16 cm(-1). The scaled B3LYP frequencies are more reliable than that of the BLYP and HF methods with the mean absolute deviation about 17 cm(-1). On the basis of the comparison between calculated and experimental results, assignments of fundamental vibrational modes are examined. Also the structure and vibrational frequencies are compared with those of anthracene, pyridine and benzene to study the similarities and differences.  相似文献   

6.
用从头算方法HF/6-31G^*^*和密度函方法B3LYP/6-31G^*^*,对Si~2Cl~6分子的平衡几何构型进行优化,优化的结果与实验结果吻合得较好.并用上述两种不同的方法计算Si~2Cl~6分子的内旋转能垒,结果分别为8.786和6.694kJ/mol,其中DFT方法的计算结果与实验结果4.18kJ/mol吻合得较好.对Si~2Cl~6分子的振动基频进行计算.用HF/6-31G^*^*SQM力场所计算的频率理论值与实验值的平均误差为7.3cm^-^1,用B3LYP/6-31G^*^*未标度的力场所计算的频率理论值与实验值的平均误差为6.0cm^-^1.该密度泛函方法(B3LYP/~6-31G^*^*)的理论计算值比用HF/6-31G^*^*标度后的SQM力场计算的频率与实验值(除Si--Si键扭转振动基频之外的11条振动基频)吻合得更好.并给出了Si--Si键扭转振动基频的预测值。  相似文献   

7.
Density functional theory (DFT) methods with various exchange-correlation functionals such as SVWN, BVWN, BVWN5, BLYP, B1LYP, B3LYP, B3PW91, and BH and H are employed in a theoretical study of molecular boric-acid in gas-phase. In the calculations, the split valence 6-311++G** and 6-31G* basis sets were used. The geometry, zero-point vibrational energies (ZPVEs), and harmonic infrared vibrational (IR) frequencies are predicted. The calculated C3h-symmetry geometrical parameters are compared with Hartree–Fock (HF) calculation results and experimental data. IR frequencies predicted by the BLYP, B3LYP, and B3PW91 calculations are in good agreement with experimental data. The frequency calculations presented here also suggest that the C3h-symmetrical structure corresponds to a minimum in the potential energy surface, but neither is D3h- or C3-symmetrical structure.  相似文献   

8.
FT-IR and (1)H, (13)C, DEPT, HETCOR, COSY, and NOESY NMR spectra of 2-(1-cyclohexenyl)ethylamine (CyHEA) have been reported for the first time. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of CyHEA (C(8)H(15)N) have been calculated by means of the Hartree-Fock (HF), Becke-Lee-Yang-Parr (BLYP) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31 G(d) and 6-31 G(d,p) basis sets, respectively. The comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for vibrational frequencies and predicting NMR properties.  相似文献   

9.
FT-IR and (1)H, (13)C, DEPT, COSY, NOESY, HETCOR, INADEQUATE NMR spectra of 1-phenylpiperazine (pp) have been reported for the first time except for its (1)H NMR spectrum. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of pp (C(10)H(14)N(2)) have been calculated by means of the Hartree-Fock (HF) and Becke-Lee-Yang-Parr (BLYP) or Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G(d) and 6-31G(d,p) basis sets, respectively. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for predicting vibrational frequencies and NMR properties.  相似文献   

10.
The molecular structure and conformational stability of CH2CHCH2X (X=F, Cl and Br) molecules were studied using ab initio and density functional theory (DFT) methods. The molecular geometries of 3-fluoropropene were optimized employing BLYP and B3LYP levels of theory of DFT method implementing 6-311+G(d,p) basis set. The MP2/6-31G*, BLYP and B3LYP levels of theory of ab initio and DFT methods were used to optimize the 3-chloropropene and 3-bromopropene molecules. The structural and physical parameters of the molecules are discussed with the available experimental values. The rotational potential energy surface of the above molecules were obtained at MP2/6-31G* and B3LYP/6-311+G(d,p) levels of theory. The Fourier decomposition of the rotational potentials were analyzed. The HF/6-31G* and MP2/6-31G* levels of theory have predicted the cis conformer as the minimum energy structure for 3-fluoropropene, which is in agreement with the experimental values, whereas the BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory reverses the order of conformation. The ΔE values calculated for 3-chloropropene at MP2/6-31G*, BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory show that the gauche form is more stable than the cis form, which is in agreement with the experimental value. The same levels of theory have also predicted that the gauche form is stable than cis for 3-bromopropene molecule. The maximum hardness principle has been able to predict the stable conformer of 3-fluoropropene at HF/6-31G* level of theory, but the same level of theory reverses the conformational stability of 3-chloropropene and 3-bromopropene molecules and MP2/6-31G* level of theory predicted the stable conformer correctly.  相似文献   

11.
Eleven possible conformers of glycylglycine have been studied by using the BLYP, B3LYP methods of density functional theory and the HF method at the basis set of 6-311++G**. BLYP (using Becke's and Lee-Yang-Parr's correlation functionals), ab initio Hartree-Fock (HF) and hybrid DFT/HF B3LYP calculations have been carried out to study the structure and vibrational spectra of glycylglycine. Glycylglycine crystal structure has been determined by X-ray diffraction analysis. The title compound has been crystallizes in the orthorhombic space group C1, with Z=4. And the unit cell parameters are: a=8.1184(12)A, b=9.5542(14)A, c=7.8192(11)A and V=577.95(15)A(3). Molecular conformation calculations have got 11 possible conformers. In these possible conformers, the most stable one has been selected. The BLYP/6-311++G** and scaled HF/6-311++G** frequencies correspond well with available experimental assignments of the normal vibrational modes. Comparison of the observed fundamental vibrational frequencies of glycylglycine and calculated results by density functional B3LYP and Hartree-Fock (HF) methods indicates that B3LYP is superior to the scaled Hartree-Fock (HF) for molecular vibrational issues.  相似文献   

12.
贡雪东  肖鹤鸣 《化学学报》1999,57(7):696-705
用密度函数理论(DFT)的BLYP和B3LYP方法,取6-31G,6-31G^*,6-31G^*^*,6-311G,6-311G^*和6-311G^*^*六种基组,对硝酸甲酯和硝酸乙酯的几何构型和红外振动频率进行了计算研究.结果表明,B3LYP方法在采用极化基组(6-31G^*,6-31G^*^*,6-311G^*和6-311G^*^*)时计算得到的结果均较好,适用于硝酸酯类化合物的研究.而BLYP方法无论采用何种基组均不适用;运用校正后的B3LYP/6-31G^*频率(校正因子0.975)计算得到的热力学性质(C^o~p,H^o和S^o)与实验结果较吻合。  相似文献   

13.
The quantum mechanical force fields (QMFF's) of 3,3-dimethyl-1-(tert-butyl)cyclopropene (I), 3,3-dimethyl-1-(trimethylsilyl)cyclopropene (II), 3,3-dimethyl-1-(trimethylgermyl)cyclopropene (III), and 3,3-dimethyl-1-(trimethylstannyl)cyclopropene (IV) were calculated at the HF/3-21G*//HF/3-21G* level. The set of scale factors for the correction of HF/3-21G*//HF/3-21G* QMFF of II was determined using its well-characterised vibrational spectrum. Transferral of the set of scale factors obtained for II to the QMFF's of I, III and IV and calculation of the fundamental frequencies resulted in good agreement between the calculated and previously assigned experimental frequencies of III. This again demonstrates the feasibility of transferral of a set of scale factors obtained for the correction of the QMFF of a molecule to others containing heteroatoms from the same column of the Mendeleyev Periodic Table. Thus the calculations performed permitted the accurate assignment of the fundamental vibrational frequencies in the experimental IR spectrum of IV. The vibrational frequencies of 3,3-dimethyl-1-(tert-butyl)cyclopropene (I) were also calculated from the HF/6-31G*//HF/6-31G* QMFF, scaled by the set of scale factors used previously for the HF/6-31G*//HF/6-31G* QMFF's of II and III. Regularities in the trends of some vibrational frequencies with increasing atomic number of the heteroatom are observed.  相似文献   

14.
The experimental Raman and IR vibrational spectra of 3,3-dimethyl-1-(trimethylsilyl)cyclopropene in the liquid phase were recorded. Total geometry optimisation was carried out at the HF/6-31G* level and the HF/6-31G*//HF/6-31G* force field was computed. This force field was corrected by scale factors determined previously (using Pulay's method) for correction of the HF/6-31G*//HF/6-31G* force fields of 3,3-dimethylbutene-1, 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The theoretical vibrational frequencies calculated from the scaled quantum mechanical force field and the theoretical intensities obtained from the quantum mechanical calculation were used to construct predicted spectra and to perform the vibrational analysis of the experimental spectra.  相似文献   

15.
The molecular structure and vibrational spectra of 3-acetyl-4-[N-(2'-aminopyridinyl)-3-amino]-3-buten-2-one (C(11)H(13)N(3)O(2)) in the ground state have been investigated by Hartree-Fock and density functional method (B3LYP and BLYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that B3LYP is superior to the scaled HF approach for molecular problems.  相似文献   

16.
The hydrogen-bonding ability of five-membered heteroaromatic molecules containing one chalcogen and two heteroatoms with nitrogen in addition to chalcogen, respectively, have been analyzed using density functional and molecular orbital methods through adduct formation with water. The stabilization energies for all the adducts are established at B3LYP/6-31+G* and MP2/6-31+G* levels after correcting for the basis set superposition error by using the counterpoise method and also corrected for zero-point vibrational energies. A natural bond orbital analysis at B3LYP/6-31+G* level and natural energy decomposition analysis at HF/6-31+G* using MP2/6-31+G* geometries have been carried out to understand the nature of hydrogen-bonding interaction in monohydrated heterocyclic adducts. Nucleus-independent chemical shift have been evaluated to understand the correlation between hydrogen bond formation and aromaticity.  相似文献   

17.
3,3-dimethyl-1-(trimethylgermyl)cyclopropene (I) was synthesised using a standard procedure. The IR and Raman spectra of I in the liquid phase were measured. The molecular geometry of I was optimised completely at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* force field was calculated and scaled using the set of scale factors transferred from those determined previously for scaling the theoretical force fields of 3,3-dimethylbutene-1 and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The assignments of the observed vibrational bands were performed using the theoretical frequencies calculated from the scaled HF/6-31G*//HF/6-31G* force field and the ab initio values of the IR intensities, Raman cross-sections and depolarisation ratios. The theoretical spectra are given. The completely optimised structural parameters of I and its vibrational frequencies are compared with corresponding data of related molecules.  相似文献   

18.
The laser-excited Raman spectra of liquid CH3SiClnBr3?n (n = 0, 1, 2) were studied. Quantumchemical calculations of these substances with geometry optimization were performed to determine their harmonic force fields and vibrational frequencies. The calculations were made using the HF/6-31G* and HF/6-311++G** approximations and density functional theory at the B3LYP/6-31G* and B3LYP/6-311++G** levels. An interpretation of the spectra was suggested and the calculated force fields were discussed in comparison with the data on related compounds.  相似文献   

19.
The cycloaddition of thiobenzophenone S-methylide to thiobenzophenone, an experimentally well-known reaction, was studied, using (U)HF/3-21G* for finding stationary points and (U)B3LYP/6-31G*//(U)HF/3-21G* single-point calculations for energies. Some optimizations were performed by (U)B3LYP/ 6-31G* to check the reliability of the calculations. The comparison of the concerted pathways and stepwise reactions via C,C-biradicals and C,S-zwitterions showed that the formation of a tetraphenyl-substituted C,C-biradical and its ring closure to 4,4,5,5-tetraphenyl-1,3-dithiolane constitutes the energetically most probable pathway of product formation, despite the fact that the regioisomeric 2,2,4,4-tetraphenyl-substituted product is more favorable by 17 kcal mol(-1). Model calculations on bond dissociation energies showed that (U)B3LYP with various basis sets overestimates radical stabilization, whereas CBS-QB3 closely reproduced experimental values. Results with the BLYP functional are similar to those with B3LYP. The consequences of the overestimation of radical stability for the cycloaddition mechanism involving biradicals are discussed. Thiobenzophenone S-methylide, if not captured by a dipolarophile, dimerizes to 2,2,3,3-tetraphenyl-1,4-dithiane. Calculation disclosed likewise a tetraphenyl-substituted C,C-biradical as intermediate.  相似文献   

20.
We investigated structures, vibrational frequencies, and rotational barriers of disilane (Si2H6), hexafluorodisilane (Si2F6), and hexamethyldisilane (Si2Me6) by using ab initio molecular orbital and density functional theories. We employed four different levels of theories (i.e., HF/6–31G*, MP2/6–31G*, BLYP/6–31G*, and B3LYP/6–31G*) to optimize the structures and to calculate the vibrational frequencies (except for Si2Me6 at MP2/6–31G*). MP2/6–31G* calculations reproduce experimental bond lengths well, while BLYP/6–31G* calculations largely overestimate some bond lengths. Vibrational frequencies from density functional theories (BLYP/6–31G* and B3LYP/6–31G*) were in reasonably good agreement with experimental values without employing additional correction factors. We calculated the ΔG(298 K) values of the internal rotation by correcting zero-point vibration energies, thermal vibration energies, and entropies. We performed CISD/6–31G*//MP2/6–31G* calculations and found the ΔG(298 K) values for the internal rotation of Si2H6, Si2F6, and Si2Me6 to be 1.36, 2.06, and 2.69 kcal/mol, respectively. The performance of this level was verified by using G2 and G2(MP2) methods in Si2H6. According to our theoretical results, the ΔG(298 K) values were marginally greater than the ΔE(0 K) values in Si2F6 and Si2Me6 due to the contribution of the entropy. In Si2H6 the ΔE(0 K) and ΔG(298 K) values were coincidently similar due to a cancellation of two opposing contributions between zero-point and thermal vibrational energies, and entropies. Our calculated ΔG(298 K) values were in good agreement with experimental values published recently. In addition, we also performed MM3 calculations on Si2H6 and Si2Me6. MM3 calculated rotational barriers and thermodynamic properties were compared with high level ab initio results. Based on this comparison, MM3 calculations reproduced high level ab initio results in rotational barriers and thermodynamic properties of Si2H6 derivatives including vibrational energies and entropies, although large errors exist in some vibrational frequencies. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1523–1533, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号