首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many nonconvex nonlinear programming (NLP) problems of practical interest involve bilinear terms and linear constraints, as well as, potentially, other convex and nonconvex terms and constraints. In such cases, it may be possible to augment the formulation with additional linear constraints (a subset of Reformulation-Linearization Technique constraints) which do not affect the feasible region of the original NLP but tighten that of its convex relaxation to the extent that some bilinear terms may be dropped from the problem formulation. We present an efficient graph-theoretical algorithm for effecting such exact reformulations of large, sparse NLPs. The global solution of the reformulated problem using spatial Branch-and Bound algorithms is usually significantly faster than that of the original NLP. We illustrate this point by applying our algorithm to a set of pooling and blending global optimization problems.  相似文献   

2.
Convex and concave envelopes play important roles in various types of optimization problems. In this article, we present a result that gives general guidelines for constructing convex and concave envelopes of functions of two variables on bounded quadrilaterals. We show how one can use this result to construct convex and concave envelopes of bilinear and fractional functions on rectangles, parallelograms and trapezoids. Applications of these results to global optimization are indicated.  相似文献   

3.
We propose an SQP-type algorithm for solving nonlinear second-order cone programming (NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which the constraints involve linear approximations of the constraint functions in the original problem and the objective function is a convex quadratic function. Those subproblems can be transformed into linear SOCP problems, for which efficient interior point solvers are available. We establish global convergence and local quadratic convergence of the algorithm under appropriate assumptions. We report numerical results to examine the effectiveness of the algorithm. This work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science.  相似文献   

4.
Nonconvex programs involving bilinear terms and linear equality constraints often appear more nonlinear than they really are. By using an automatic symbolic reformulation we can substitute some of the bilinear terms with linear constraints. This has a dramatically improving effect on the tightness of any convex relaxation of the problem, which makes deterministic global optimization algorithms like spatial Branch-and-Bound much more eff- cient when applied to the problem.  相似文献   

5.
张博  高岳林 《计算数学》2022,44(2):233-256
基于对p-1维输出空间进行剖分的思想,提出了一种求解线性比式和问题的分枝定界算法.通过一种两阶段转换方法得到原问题的一个等价问题,该问题的非凸性主要体现在新增加的p-1个非线性等式约束上.利用双线性函数的凹凸包络对这些非线性约束进行凸化,这就为等价问题构造了凸松弛子问题.将凸松弛子问题中的冗余约束去掉并进行等价转换,从而获得了一个比凸松弛子问题规模更小、约束更少的线性规划问题.证明了算法的理论收敛性和计算复杂性.数值实验表明该算法是有效可行的.  相似文献   

6.
《Optimization》2012,61(11):1713-1735
In this article we propose a simple heuristic algorithm for approaching the maximally predictable portfolio, which is constructed so that return model of the resulting portfolio would attain the largest goodness-of-fit. It is obtained by solving a fractional program in which a ratio of two convex quadratic functions is maximized, and the number of variables associated with its nonconcavity has been a bottleneck in spite of continuing endeavour for its global optimization. The proposed algorithm can be implemented by simply solving a series of convex quadratic programs, and computational results show that it yields within a few seconds a (near) Karush–Kuhn–Tucker solution to each of the instances which were solved via a global optimization method in [H. Konno, Y. Takaya and R. Yamamoto, A maximal predictability portfolio using dynamic factor selection strategy, Int. J. Theor. Appl. Fin. 13 (2010) pp. 355–366]. In order to confirm the solution accuracy, we also pose a semidefinite programming relaxation approach, which succeeds in ensuring a near global optimality of the proposed approach. Our findings through computational experiments encourage us not to employ the global optimization approach, but to employ the local search algorithm for solving the fractional program of much larger size.  相似文献   

7.
Two algorithms for finding a global minimum of the product of two affine fractional functions over a compact convex set and solving linear fractional programs with an additional constraint defined by the product of two affine fractional functions are proposed. The algorithms are based on branch and bound techniques using an adaptive branching operation which takes place in one-dimensional intervals. Results from numerical experiments show that large scale problems can be efficiently solved by the proposed methods.  相似文献   

8.
对广义几何规划问题(GGP)提出了一个确定型全局优化算法,这类优化问题能广泛应用于工程设计和非线性系统的鲁棒稳定性分析等实际问题中,使用指数变换及对目标函数和约束函数的线性下界估计,建立了GGP的松弛线性规划(RLP),通过对RLP可行域的细分以及一系列RLP的求解过程,从理论上证明了算法能收敛到GGP的全局最优解,对一个化学工程设计问题应用本文算法,数值实验表明本文方法是可行的。  相似文献   

9.
1引言随机规划中的概率约束问题在工程和管理中有广泛的应用.因为问题中包含非线性的概率约束,它们的求解非常困难.如果目标函数是线性的,问题的求解就比较容易.给出了一个求解随机线性规划概率约束问题的综述.原-对偶算法和切平面算法是比较有效的.在本文中,我们讨论随机凸规划概率约束问题:  相似文献   

10.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

11.
A rigorous decomposition approach to solve separable mixed-integer nonlinear programs where the participating functions are nonconvex is presented. The proposed algorithms consist of solving an alternating sequence of Relaxed Master Problems (mixed-integer linear program) and two nonlinear programming problems (NLPs). A sequence of valid nondecreasing lower bounds and upper bounds is generated by the algorithms which converge in a finite number of iterations. A Primal Bounding Problem is introduced, which is a convex NLP solved at each iteration to derive valid outer approximations of the nonconvex functions in the continuous space. Two decomposition algorithms are presented in this work. On finite termination, the first yields the global solution to the original nonconvex MINLP and the second finds a rigorous bound to the global solution. Convergence and optimality properties, and refinement of the algorithms for efficient implementation are presented. Finally, numerical results are compared with currently available algorithms for example problems, illuminating the potential benefits of the proposed algorithm.  相似文献   

12.
Structural redundancies in mathematical programming models are nothing uncommon and nonlinear programming problems are no exception. Over the past few decades numerous papers have been written on redundancy. Redundancy in constraints and variables are usually studied in a class of mathematical programming problems. However, main emphasis has so far been given only to linear programming problems. In this paper, an algorithm that identifies redundant objective function(s) and redundant constraint(s) simultaneously in multi-objective nonlinear stochastic fractional programming problems is provided. A solution procedure is also illustrated with numerical examples. The proposed algorithm reduces the number of nonlinear fractional objective functions and constraints in cases where redundancy exists.  相似文献   

13.
An algorithm for solving a linear multiplicative programming problem (referred to as LMP) is proposed. LMP minimizes the product of two linear functions subject to general linear constraints. The product of two linear functions is a typical non-convex function, so that it can have multiple local minima. It is shown, however, that LMP can be solved efficiently by the combination of the parametric simplex method and any standard convex minimization procedure. The computational results indicate that the amount of computation is not much different from that of solving linear programs of the same size. In addition, the method proposed for LMP can be extended to a convex multiplicative programming problem (CMP), which minimizes the product of two convex functions under convex constraints.  相似文献   

14.
This paper addresses itself to the algorithm for minimizing the sum of a convex function and a product of two linear functions over a polytope. It is shown that this nonconvex minimization problem can be solved by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in higher dimension and apply a parametric programming (path following) approach. Also it is shown that the same idea can be applied to a generalized linear fractional programming problem whose objective function is the sum of a convex function and a linear fractional function.  相似文献   

15.
The computational complexity of linear and nonlinear programming problems depends on the number of objective functions and constraints involved and solving a large problem often becomes a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this complexity and simplifying a linear or nonlinear programming problem while maintaining the essential properties of the original system. Although a large number of redundancy detection methods have been proposed to simplify linear and nonlinear stochastic programming problems, very little research has been developed for fuzzy stochastic (FS) fractional programming problems. We propose an algorithm that allows to simultaneously detect both redundant objective function(s) and redundant constraint(s) in FS multi-objective linear fractional programming problems. More precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by transforming them in probabilistic–possibilistic constraints characterized by predetermined confidence levels. We present two numerical examples to demonstrate the applicability of the proposed algorithm and exhibit its efficacy.  相似文献   

16.
This paper is concerned with the development of an algorithm for general bilinear programming problems. Such problems find numerous applications in economics and game theory, location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and various risk management problems. The proposed approach develops a new Reformulation-Linearization Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and-bound algorithm. The method first reformulates the problem by constructing a set of nonnegative variable factors using the problem constraints, and suitably multiplies combinations of these factors with the original problem constraints to generate additional valid nonlinear constraints. The resulting nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear term. This RLT process yields a linear programming problem whose optimal value provides a tight lower bound on the optimal value to the bilinear programming problem. Various implementation schemes and constraint generation procedures are investigated for the purpose of further tightening the resulting linearization. The lower bound thus produced theoretically dominates, and practically is far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some special cases, this process is shown to yield an exact linear programming representation. For the associated branch-and-bound algorithm, various admissible branching schemes are discussed, including one in which branching is performed by partitioning the intervals for only one set of variables x or y, whichever are fewer in number. Computational experience is provided to demonstrate the viability of the algorithm. For a large number of test problems from the literature, the initial bounding linear program itself solves the underlying bilinear programming problem.This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

17.
The global minimization of large-scale partially separable non-convex problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of a separable concave part, an unseparated convex part, and a strictly linear part, which are all coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. An important special class of problems which can be reduced to this form are the synomial global minimization problems. Such problems often arise in engineering design, and previous computational methods for such problems have been limited to the convex posynomial case. In the current work, a convex underestimating function to the objective function is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and convex underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results obtained on the four processor Cray 2, both sequentially and in parallel on all four processors, are also presented.  相似文献   

18.
Global optimization of mixed-integer bilevel programming problems   总被引:1,自引:0,他引:1  
Two approaches that solve the mixed-integer nonlinear bilevel programming problem to global optimality are introduced. The first addresses problems mixed-integer nonlinear in outer variables and C2-nonlinear in inner variables. The second adresses problems with general mixed-integer nonlinear functions in outer level. Inner level functions may be mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in inner integer variables, and linear in inner continuous variables. This second approach is based on reformulating the mixed-integer inner problem as continuous via its vertex polyheral convex hull representation and solving the resulting nonlinear bilevel optimization problem by a novel deterministic global optimization framework. Computational studies illustrate proposed approaches.  相似文献   

19.
申培萍  王俊华 《应用数学》2012,25(1):126-130
本文针对一类带有反凸约束的非线性比式和分式规划问题,提出一种求其全局最优解的单纯形分支和对偶定界算法.该算法利用Lagrange对偶理论将其中关键的定界问题转化为一系列易于求解的线性规划问题.收敛性分析和数值算例均表明提出的算法是可行的.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号