首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An imbalance between urinary-promoting and -inhibiting factors has been suggested as more important in urinary stone formation than a disturbance of any single substance. To investigate the value of promoter/inhibitor ratios for estimation of the risk of urolithiasis, urinary citrate/calcium, magnesium/calcium oxalate, and oxalate/citrate x glycosaminoglycans ratios were determined in 30 children with urolithiasis, 36 children with isolated hematuria, and 15 healthy control children. The cutoff points between normal children and children with urolithiasis, accuracy, specificity, and sensitivity for each ratio were determined and compared with those of the 24-h urine calcium and oxalate excretion and urine saturation calculated with the computer program EQUIL 2. The neural network application (aiNET Artificial Neural Network, version 1.25) was used for the determination of the cutoff points for the classification of normal children and the urolithiasis group. The best test for differentiating stone formers from non-stone formers proved the aiNET determined cutoff values of oxalate/citrate x glycosaminoglycans ratio. The method showed 97.78% accuracy, 100% sensitivity, and 93.33% specificity. Two cutoff points between normal and urolithiasis groups were found showing that the children with urolithiasis had ratio values either above 34.00 or less than 10.16. Increased oxalate excretion was linked to the first cutoff value (34.00), and decreased glycosaminoglycans excretion was typical of the second cutoff value (10.16).  相似文献   

2.
Various crystals are seen in human urine. Oxalate, Phosphate, Uric acid, and Urate crystals are generally seen in urinary calculi. Calcium stones are most common, comprising 75 % of all urinary calculi. They may be pure calcium oxalate or calcium phosphate or a mixture of both. Many stones are not homogeneous. Low calcium intake increases the intestinal absorption of calcium, thus decreasing the amount of calcium available in the intestinal tract to form insoluble complexes with Oxalate. Consequently, a higher amount of oxalate is available for intestinal absorption and as a result, urinary oxalate excretion increases. Mineral water consumption did not reduce urinary oxalate excretion. High urinary excretion and concentration of magnesium decrease both the nucleation and growth rates of calcium oxalate crystals in urine, because of the higher solubility of magnesium oxalate compared with calcium oxalate. Analytical results show calcium oxalate to be one of the major inorganic components of renal stones and found to be present in almost all kidney and bladder stones. About 39.5 % of the total composition of the calculi is found to contain purely calcium oxalate and also hydroxyl apatite. The ten samples are a mixture of calcium oxalate and phosphate stones. Four samples are calcium oxalate as major composition and the remaining are calcium phosphate as major composition. These kidney stones are taken photographically and size of the stone are measured using optical microscopy. These qualitative analyses are also confirmed by UV, FTIR, DSC, and XRD analysis.  相似文献   

3.
二水草酸钙(COD)是泌尿系结石的主要成分之一,其成核、生长和聚集过程与尿石的形成密切相关。本文结合我们近年来的工作,综述了生物膜及其模拟膜对COD的调控作用,尿大分子、焦磷酸盐、多磷酸盐、柠檬酸、酒石酸及表面活性剂等尿小分子的诱导作用,过饱和度、化学计量条件、pH值、离子强度、温度等体系参数对COD形成的影响;讨论了COD的形貌、晶面电荷及其与细胞膜粘附的研究进展。从临床上预防和治疗草酸钙结石的角度,综述了有利于COD形成的因素。  相似文献   

4.
凝胶体系中不同结构羧酸盐对草酸钙生物矿化的影响   总被引:4,自引:0,他引:4  
采用双扩散法研究了凝胶体系中四元羧酸盐(Na2EDTA)、三元羧酸盐柠檬酸钠(Na3cit)、二元羧酸盐酒石酸钠(Na2tart)和一元羧酸盐醋酸钠(NaAc)对草酸钙(CaOx)结晶的影响.抑制一水草酸钙(COM)聚集的能力为:Na2EDTA >Na3cit >Na2tart >NaAc;诱导二水草酸钙(COD)的能力为:Na3cit >Na2tart >Na2EDTA >NaAc.羧酸的抗衡阳离子影响CaOx的结晶. H3cit、Na3cit和K3cit抑制COM聚集和诱导COD形成的能力均为:K3cit-Na3cit >H3cit.无论是诱导COD生成,还是抑制COM聚集,均可以减小结石形成的几率,对临床上防治结石具有积极的意义.  相似文献   

5.
This article reviews the authors' experiments on calcium oxalate growth at lipid monolayers. Calcium oxalate is the principal mineral component of most urinary stones. Membrane constituents associate either actively or passively with calcific minerals during stone formation, and it has been proposed that lipid assemblies play a significant role, possibly providing sites for the initial nucleation event. Langmuir monolayers allow systematic studies of the heterogeneous precipitation of calcium oxalate at lipid assemblies. The influences of the chemical identity of the lipid headgroup, the organization of the monolayer, and the presence of heterogeneities and phase boundaries within the monolayer have been explored.  相似文献   

6.
草酸钙结石的形成与尿液中草酸钙的存在形式密切相关,一水草酸钙(COM)促进尿石症形成,而二水草酸钙(COD)易随尿液排出体外。本文采用体外模拟方法,比较研究了COD晶体在水溶液、正常人尿液和结石患者尿液3个不同体系中的稳定性及海藻龙须菜多糖(SPS)对COD的稳定作用。在水溶液和患者尿液中,不但COD转化率高,而且得到的转化产物COM晶体聚集程度大;而在正常人尿液中,COD转化率低,转化产物聚集程度较小。COD在不同体系中转化的速度依次为:水溶液>患者尿液>正常人尿液。从海藻龙须菜中提取的硫酸多糖可以稳定COD的存在并减小COM的聚集,这有利于阻止草酸钙结石的形成,因此,海藻龙须菜多糖有可能用于防止草酸钙结石形成。  相似文献   

7.
Simulation of calcium oxalate stone in vitro   总被引:3,自引:0,他引:3  
Urolithiasis constitutes a serious health problem that affects a significant section of mankind. Between 3% and 14% of the population, depending on the geographical region, suffer from this illness[1]. For example, the incidence of urolithiasis in Florida in the United States of America was 15.7 in 100000 people and increased to 20.8 in 1996. Urolithiasis remains a major medical prob-lem in China, especially in Guangdong Province. A survey in 1997 in Shenzhen City, the most southern city i…  相似文献   

8.
本文探讨了酒石酸及其盐对泌尿系结石形成、抑制和治疗的化学基础,重点讨论了其与钙离子的螯合,诱导二水草酸钙和三水草酸钙形成、减少晶体滞留,影响CaOxa晶体的晶面与形貌,抑制尿石矿物的成核、生长和聚集,调节新陈代谢、减小尿石形成的几率,并讨论了抗衡阳离子对其抑制能力的影响。  相似文献   

9.
The majority of human kidney stones are composed primarily of calcium oxalate monohydrate (COM) crystals. Thus, determining the molecular modulation of COM crystallization by urinary constituents is crucial for understanding and controlling renal stone disease. A comprehensive molecular-scale view of COM shape modification by citrate, obtained through a combination of in situ atomic force microscopy and molecular modeling, is presented here. We find that while the most important factors determining binding strength are coordination between COO- groups on citrate and Ca ions in the lattice, as well as H-bonds formed between the OH group of citrate and an oxalate group, the nonplanar geometry of the steps provides the most favorable environment due to the ability of the step-edge to accommodate all Ca-COO- coordinations with minimal strain. However, binding to all steps and terraces on the (010) face is much less favorable than on the (101) face due to electrostatic repulsion between oxalate and COO- groups. For example, the maximum binding energy, -166.5 kJ mol(-1), occurs for the [101] step on the (101) face, while the value for the [021] step on the (010) face is only -56.9 kJ mol(-1). This high selectivity leads to preferential binding to steps on the (101) face that pins step motion. Yet anisotropy in interaction strength on this face drives anisotropic changes in step kinetics that are responsible for shape modification of macroscopic COM crystals. Thus, the molecular scale growth kinetics and the bulk crystal habit are fully consistent with the simulations.  相似文献   

10.
植物药抑制泌尿系结石形成的化学基础   总被引:1,自引:0,他引:1  
植物药治疗泌尿系结石具有独特的疗效.本文综述了国内外植物药(泽泻,Phyllanthus niruri,Zeamays,Agropyron repens和Herniaria hirsute等)在体外模拟实验和动物实验中对泌尿系结石形成的影响,植物药抑制泌尿系结石形成的机制和化学基础是:植物药与钙离子发生配位,降低尿石盐的过饱和度;抑制一水草酸钙生长,诱导二水草酸钙形成;抑制晶体生长和聚集;可以保护尿路粘膜,防止晶体在肾上皮细胞上发生粘附;改变尿石形成促进剂和抑制剂的排泄量.  相似文献   

11.
枸橼酸盐抑制泌尿系结石形成的化学基础   总被引:7,自引:0,他引:7  
欧阳健明 《无机化学学报》2004,20(12):1377-1382
本文综述了防石药物枸橼酸及其盐对泌尿系结石形成、抑制和治疗的化学基础,重点讨论了其与钙离子的配位、封闭尿石矿物生长活性位点、抑制草酸钙的成核和生长、增加尿液中尿大分子和枸橼酸浓度、改变尿液pH以及诱导二水草酸钙和三水草酸钙形成,并讨论了抗衡阳离子对枸橼酸盐抑制能力的影响。  相似文献   

12.
采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)和ζ电位分析仪研究了草酸钙(CaOxa)结石患者在服用柠檬酸钾(K3cit)前后尿液中微晶的性质变化,这些性质包括:尿微晶的形貌、尺寸、聚集状态、质量、种类和ζ电位,并研究了服药前后尿液的稳定性差异和pH值变化。服用K3cit前,结石患者的尿微晶棱角尖锐,聚集明显,尺寸从几十纳米到几百微米不等,主要为一水草酸钙(COM)、尿酸等;而服用K3cit一周后,部分尿微晶的形状变得圆钝,聚集现象明显减少,平均粒径减小,部分尿微晶的表面出现凹陷,二水草酸钙(COD)和尿酸盐的百分含量增加,尿微晶的数量和种类减少,尿液pH值上升,ζ电位绝对值增加,自相关时间增加。从患者服用K3cit后引起尿pH值增加、尿液中排泄的柠檬酸和Tamm-Horsfall蛋白浓度增加、柠檬酸与Ca2+离子配位等角度,讨论了K3cit抑制CaOxa结石形成的机制。  相似文献   

13.
武志富  吴汉夔  高艳萍 《化学通报》2014,77(11):1113-1115
泌尿系结石是临床上的常见病和多发病,可生长于肾盂、肾实质、输尿管以及膀胱中,较大的结石常会导致尿道阻塞、感染甚至肾脏坏死等病变,是一种严重危害人体健康的泌尿系统疾病。尿结石是动物体内异常生物矿化的产物,其主要成分有草酸钙、磷酸铵镁、尿酸等,其中以草酸钙最为常见。本研究直接取肾结石病人排出体外的自然结石和尿液中的结石微晶作为研究对象,采用透射电子显微镜、扫描电子显微镜、X-射线衍射分析和傅立叶变换红外光谱等手段对尿结石进行表征分析。研究结果表明,尿液中的纳米微晶的聚集是导致微晶快速增大和结石形成的关键因素,通过调控纳米微晶的物理化学性质有可能抑制肾结石的形成和复发。  相似文献   

14.
Crystallization of calcium oxalate is studied mainly in the diluted healthy urine using scanning electron microscopy (SEM), and is compared with the crystallization in the diluted pathological urine. It suggests that the average sizes of calcium oxalate crystals are not in direct proportion to the concentrations of Ca2+ and Ox2- ions. Only in the concentration range of 0.60-0.90 mmol/L can larger size of CaOx crystals appear. When the concentrations of Ca2+ and Ox2- ions are 1.20, 0.80, 0.60, 0.30 and 0.15 mmol/L in the healthy urine, the average sizes of calcium oxalate crystallites are 9.5 X 6.5, 20.0 X 13.5 and 15.0 jj,m X 10.0 jj,m, respectively, for the former three samples after 6 d crystallization. No crystal appears even after 30 d crystallization for the samples of concentrations of 0.30 and 0.15 mmol/L due to their low supersaturations. The results theoretically explain why the probability of stone forming is clinically not in direct proportion to the concentrations of Ca2+ and Ox2- ions. Laser scattering technology also confirms this point. The reason why healthy human has no risk of urinary stone but stone-formers have is that there are more urinary macromolecules in healthy human urines than that in stone-forming urines. These macromolecules may control the transformation in CaOx crystal structure from monohydrate cal-cium oxalate (COM) to dihydrate calcium oxalate (COD). COD has a weaker affinity for renal tubule cell membranes than COM. No remarkable effect of the crystallization time is observed on the crystal morphology of CaOx. All the crystals are obtuse hexagon. However, the sizes and the number of CaOx crystals can be affected by the crystallization time. In the early stage of crystalli-zation (1-6 d), the sizes of CaOx crystals increase and the number of crystal particles changes little as increasing the crystallization time due to growth control. In the middle and late stages (6-30 d), the number of crystals increases markedly while the growth rate changes little due to the nucleation control.  相似文献   

15.
The human urinary calculi are mainly constituted by calcium oxalate, magnesium ammonium phosphate hexahydrate, and uric acid. The ions or molecules are easily characterized by wet chemical methods. The difficulties appear in the differentiation of the hydrates of calcium oxalate (monohydrate COM or Whewellite, and dihydrate COD or Weddelite). A high level of COD in the urinary stones leads, often, inflammation, sharp pain and blood in urine. In the worse cases, they must be extracted by surgical way. The identification of the main components of urinary calculi, the knowledge of the true number of water molecules bounded to the calcium oxalate, and the determination of each hydrate in the mixture, are the interests of this memory. The thermal analysis (simultaneous DTA-TG) was applied on thirty-three urinary calculi. The determination of the calcium oxalate hydrates was confirmed by calorimetry (DSC). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Pyrophosphate (PPi) and phytic acid (IP6) are natural phosphorous compounds with growing interest in the biomedical field due to their ability as potential inhibitors of urolithiasis among others. Existing methodologies for their evaluation show inconveniences mainly associated with sample treatment, matrix interferences and lack of resolution. The objective of the present work is the validation of a new method to determine both inhibitors in urine samples selectively and its application to the diagnosis of lithiasic patients. After urine purification by an off-line anion exchange solid phase extraction (SPE), based in an appropriate acidic elution gradient, the phosphorous compounds were analyzed by 31P measurements by inductively coupled plasma mass spectrometry (ICP-MS) in the purified urine extracts. Linear range and limit of detection obtained were adequate for the analysis of the physiological amounts of the compounds in urine. The method was successfully applied to human urine samples, resulting in adequate accuracy and precision and allowing for the analysis of phosphorus inhibitors of urolithiasis in urine. The method simplicity and high sample throughput leads to a clear alternative to current determinations of the mentioned species in urine. Moreover, PPi and IP6 concentrations found in patients suffering from oxalocalcic urolithiasic were significantly lower than those for healthy controls, supporting the fact that the risk for oxalocalcic urolithiasis increases when urinary phosphorus inhibitors decrease. Thus, speciation of phosphorus inhibitors of urolithiasis in urine of stone formers can be performed, which is of unquestionable value in diagnostic, treatment and monitoring of urolithiasis.  相似文献   

17.
In this research, screening and central composite experimental designs are used to determine the effect of various factors on the aggregation and dispersion characteristics of previously grown calcium oxalate monohydrate (COM) crystals in artificial urinary environments of controlled variables. The variables examined are pH and calcium, oxalate, pyrophosphate, citrate, and protein concentrations in ultrapure water and artificial urine. Optical density measurements, particle size analysis, optical microscopy, AFM force measurements, and protein adsorption have been used to assess the state of aggregation and dispersion of the COM crystals and to elucidate the mechanisms involved in such a complex system. The data indicate that our model protein, mucin, acts as a dispersant. This is attributed to steric hindrance resulting from the adsorbed mucoprotein. Oxalate, however, promotes aggregation. Interesting interactions between protein and oxalate along with protein and citrate are observed. Such interactions (synergistic or antagonistic) are found to depend on the concentrations of these species. Surface responses for these interactions are presented and discussed in this paper. In summary, solution, surface, and interface chemistries interact in a complex manner in the physiological environment to either inhibit or promote aggregation, and an understanding of such interactions may help determine and control the factors affecting kidney stone formation.  相似文献   

18.
Methods of the electrophoretic determination of the main markers of urolithiasis, i.e., inorganic cations, ammonium, potassium, sodium, magnesium, and calcium; inorganic anions, chloride, sulfate, and phosphate; and organic acid anions, urate, citrate and oxalate, and creatinine in 24-hour collection urine with spectrophotometric detection were developed. The detection limits of analytes ranged form 0.25–1.0 μg/mL. The precision and accuracy were 2–5% and 97–101.5%, respectively. In dependence on the analyte. The developed procedures were used in the analysis of 156 urine samples. Normal ranges were preliminarily determined on a group of healthy donors.  相似文献   

19.
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O 4 2? ] > 10?5, the endothermal formation of the [CaEdta]2? complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.  相似文献   

20.
Kidney stones are crystal aggregates, most commonly containing calcium oxalate monohydrate (COM) crystals as the primary constituent. Notably, in vitro studies have suggested that anionic molecules or macromolecules with substantial anionic functionality (e.g., carboxylate) play an important role in crystal aggregation and crystal attachment to renal epithelial cells. Furthermore, kidney stones contain measurable amounts of carboxylate-rich proteins that may serve as adhesives and promote aggregation of COM crystals. Atomic force microscopy (AFM) measurements of adhesion forces between tip-immobilized molecules and the COM (100) surface in aqueous media, described herein, reveal the effect of functional groups on adhesion and support an important role for the carboxylate group in processes responsible for kidney stone formation, specifically macromolecule-mediated adhesion of COM crystals to cells and crystal aggregation. The presence of poly(aspartic acid) during force measurements results in a reduction in the adhesion force measured for carboxylate-modified tips, consistent with the blocking of binding sites on the COM (100) surface by the carboxylate-rich polymer. This competitive binding behavior mimics the known reduction in attachment of COM crystals to renal epithelial cells in the presence of carboxylate-rich urinary macromolecules. These results suggest a feasible methodology for identifying the most important crystal surface-macromolecule combinations related to stone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号