首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed highpressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton–Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the external static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.  相似文献   

2.
We have investigated a new ferrite-ceramic composite material with inductive and capacitive properties fabricated by a solid-state reaction method.We analyse the effects of the composite mechanism and microstructure on the magnetic and electric properties.The results show that the new materials can be used not only as inductor materials,but also as capacitor materials in the wide frequency range of 1kHz-1.8GHz.The real part of permeability of the composite material is between 10 and 5.6,the imaginary part of permeability is between 1.2 and 0.5,and the dielectric constant is about ten times larger than that of ordinary ferrite materials.It is suggested that the new composite materials will be widely used in anti-electromagnetic interference fields and radio frequency communication fields.  相似文献   

3.
The reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites have been studied in the microwave frequency range.The permeability of Fe50Ni50 powder/paraffin composites is greatly enhanced by introducing the planar anisotropy,and can be further enhanced by using a rotational orientation method.The complex permeability can be considered as the superposition of two types of magnetic resonance.The resonance peak at high frequency is attributed to the natural resonance,while the peak at low frequency is attributed to the domain-wall resonance.The simulated results of the microwave reflectivity show that the matching thickness,peak frequency,permeability,and permittivity are closely related to the quarter wavelength matching condition.The Fe50Ni50 powder/paraffin composites can be attractive candidates for thinner microwave absorbers in the L-band(1-2 GHz).  相似文献   

4.
Using a one-dimensional slab model, we study the influence of the external static magnetic field on the anomalous skin effects in the inductively coupled plasma. The rf electromagnetic field in the plasma is determined by solving the linearized Boltzmann equation incorporating with the Maxwell equations. The numerical results show that,due to the existence of the external magnetic field, the anomalous skin effects are greatly enhanced and the number of regions with negative absorption is decreased.  相似文献   

5.
We introduce a new method of frequency-shifting for a diode laser in laser cooling experiments, the method is based on the Zeeman egect of^87 Rb atoms. The laser frequency is stabilized by absorption spectrum line of atoms in magnetic field. We show that a magnetic field can be added up to 10^-2T. The corresponding frequency shift is 10^2 MHz and the response time is about 1ms. The large range of the frequency shift is suffcient for laser-cooling experiments.  相似文献   

6.
Microwave-absorbing polymeric composites based on single-walled carbon nanotubes(SWNTs) are fabricated via a simple yet versatile method, and these SWNT–epoxy composites exhibit very impressive microwave absorption performances in a range of 2 GHz–18 GHz. For instance, a maximum absorbing value as high as 28 dB can be achieved for each of these SWNT–epoxy composites(1.3-mm thickness) with only 1 wt% loading of SWNTs, and about 4.8 GHz bandwidth,corresponding to a microwave absorption performance higher than 10 dB, is obtained. Furthermore, such low and appropriate loadings of SWNTs also enhance the mechanical strength of the composite. It is suggested that these remarkable results are mainly attributable to the excellent intrinsic properties of SWNTs and their homogeneous dispersion state in the polymer matrix.  相似文献   

7.
Microwave magnetic properties are studied for rhombohedral structure Nd2Fe17N3-δ with planar magnetic anisotropy. Its resin composites show the permeability μ'0 = 4.15 at low frequency, the natural resonance frequency fT = 1.71 GHz and the resonance bandwidth 6.66 GHz. The calculated static permeability of Nd2Fe17N3-δ reaches 133. The microwave magnetic properties are determined by the c-axis anisotropy field, basal plane anisotropy field and high saturation magnetization. Based on microwave measurement and theoretical fitting on complex permeability spectra, Nd2Fe17N3-δ may be a promising microwave absorber with bandwidth wider than traditional hexaferrites materials in GHz ranges.  相似文献   

8.
A simple method to realize both stabilization and shift of the frequency in an external cavity diode laser (ECDL) is reported. Due to the Zeeman effect, the saturated absorption spectrum of Rb atoms in a magnetic field is shifted. This shift can be used to detune the frequency of the ECDL, which is locked to the saturated absorption spectrum. The frequency shift amount can be controlled by changing the magnetic field for a specific polarization state of the laser beam. The advantages of this tunable frequency lock include low laser power requirement, without additional power loss, cheapness, and so on.  相似文献   

9.
With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core,carbon-coated nickel Ni(C) nanoparticles are expected to be the promising microwave absorbers. Microwave electromagnetic parameters and reflection loss in a frequency range of 2 GHz–18 GHz for paraffin-Ni(C) composites are investigated.The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) composites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%,70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An excellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches-26.73 d B at 12.7 GHz, and below-10 d B, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites.  相似文献   

10.
We use the ferromagnetic resonance(FMR)method to study the properties of ferromagnetic thin film,in which external stress anisotropy,fourfold anisotropy and uniaxial anisotropy are considered.The analytical expressions of FMR frequency,linewidth and the imaginary part of magnetic susceptibility are obtained.Our results reveal that the FMR frequency and the imaginary part of magnetic susceptibility are distinctly enhanced,and the frequency linewidth or field linewidth are broadened due to a strong external stress anisotropy field.The hard-axis and easy-axis components of magnetization can be tuned significantly by controlling the intensity and direction of stress and the in-plane uniaxial anisotropy field.  相似文献   

11.
To study the impact of plasma generated by microwave breakdown on the propagation properties of microwave in high power microwave(HPM) devices, a three-dimensional(3-D) fluid model of argon plasma slab in rectangular waveguide is established and calculated by the finite-difference-time-domain(FDTD) method. A rectangular waveguide with a breakdown chamber filled with argon is set as the physics model, and HPM with frequency of 3–50 GHz propagates through this physics model. The time evolutions of the breakdown process are investigated, the reflection, transmission, and absorption coefficients of HPM are calculated, and the influences of some important parameters, including the thickness of the plasma slab and the microwave frequency on the propagation properties of the microwave are shown. Results of this work can offer theoretical instructions for suppressing the influence of breakdown to the performance of HPM devices, and for the use of microwave breakdown, such as the design of plasma limiter or absorber in HPM devices.  相似文献   

12.
We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.  相似文献   

13.
The Fibonacci piezoelectric superlattices(FPSs) with an external dc electric field is presented, in which the dc electric field can tune the bandwidth of polaritonic band gaps(PBGs) continuously and reversibly via the electrooptic effect. The absolute bandwidths of two major PBGs of the FPSs around ω= 7.5 GHz and ω = 12.5 GHz can be broadened from 0.022 GHz to 0.74 GHz and from 0.02 GHz to 0.82 GHz with the dc electric field increasing from 0 to 1.342 × 10~6 V/m, respectively. The corresponding relative bandwidths of the two major PBGs are widened from 0.28% to 9.2% and from 0.18% to 6.35%, respectively. The general mechanism for the bandwidth tunability is that the coupling strength between the lattice vibration and electromagnetic waves is capable of being altered by the dc electric field via the electro-optic effect. Thus the properties can be applied to construct microwave switchings or field tunable bulk acoustic filters.  相似文献   

14.
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5–8 ps for subluminal to superluminal light propagation.  相似文献   

15.
The applicability and limitation of some fracture criteria in the fracture mechanics of magnets are studied. It is shown that the magnetic field intensity factor can be used as a fracture criterion when the crack in a magnet is only affected by a magnetic field. For some magnetostrictive materials in which the components of magnetostriction strain do not satisfy the compatibility equation of deformation, the stress intensity factor can no longer be effectively applicable as a fracture criterion when the crack in a magnet is affected by a magnetic field and mechanical loads simultaneously.  相似文献   

16.
Graphite-like carbon films are grown in an ethanol vapor plasma in a microwave gas discharge. The electrical parameters controlling the microtopography and electronic properties of carbon films are determined. It is shown that electron bombardment affects the fine structure of graphite-like nanocrystallites and their emissive power with characteristics close to those of carbon nanotubes. The emission properties of layered graphite-like films can be improved by metal (cadmium) impurity doping. For nanocrystalline graphite-like films, emission currents with a density of 0.3 A/cm2 are induced at an electric field strength of less than 7 V/μ m in the gap. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 2, 2004, pp. 367–371. Original Russian Text Copyright ? 2004 by Suzdal’tsev, Yafarov.  相似文献   

17.
The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration Ga As/Al Ga As semiconductor quantum dot are analytically studied with the phonon-assisted transition(PAT). It is shown that the changes among a single electromagnetically induced transparency(EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.  相似文献   

18.
王为忠 《中国物理快报》2005,22(7):1680-1683
We numerically investigate the magneto-optical Cotton-Mouton effect in an alternating multilayer structure with a nonlinear dielectric constant. The multistability and polarization of the transmission of electromagnetic field near the edges of the stop gap are studied in detail. The resonant transmission is accompanied by solitons of intensity of the field. This investigation provides a way to select the transmission property with different polarizations since both the amplitude and the phase of the output field can be adjusted by the input power and by the magneto-optical coefficient depending on the external magnetic field.  相似文献   

19.
马明瑞  陈钰玲  王长 《中国物理》2006,15(11):2657-2660
In this paper, we make a theoretical investigation of the plasma-wave instability mechanism in a two-dimensional electron fluid in a high electron mobility transistor (HEMT) driven by the terahertz radiation in the presence of a perpendicular magnetic field. It is found that the resonant peaks of the gate-to-source/drain admittances and detection responsivity depend on the strength of the external magnetic field. Such phenomena can be used to produce a desired effect by adjusting the intensity of the magnetic field.  相似文献   

20.
苌磊  胡宁  姚建尧 《中国物理 B》2016,25(10):105204-105204
Alfvnic gap eigenmode(AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this eigenmode, due to easy diagnostic access and simple geometry, and the idea is to arrange a periodic array of magnetic mirrors along the plasma cylinder and introduce a local defect to break the field periodicity. The present work validates this idea by reproducing a clear AGE inside a spectral gap, and more importantly details the influence of the number and depth(or modulation factor)of magnetic mirror on the characteristics of AGE. Results show that AGE is suppressed by other modes inside the spectral gap when the number of magnetic mirrors is below a certain value, which leads to a weakened Bragg's effect. The structure and frequency of AGE remain unchanged for a decreased number of magnetic mirrors, as long as this number is enough for the AGE formation. The width of spectral gap and decay constant(inverse of decay length) of AGE are linearly proportional to the depth of magnetic mirror, implying easier observation of AGE through a bigger mirror depth. The frequency of AGE shifts to a lower range with the depth increased, possibly due to the unfrozen plasma with field line and the invalidity of small-perturbation analysis. Nevertheless, it is exciting to find that the depth of field modulation can be increased to form AGE for a very limited number of magnetic mirrors. This is of particular interest for the experimental implementation of AGE on a low-temperature plasma cylinder with limited length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号