首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
张洁  刘门全  罗志全 《中国物理》2006,15(7):1477-1480
βdecay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions 67 Ni(β-)67 Cu and 62 Mn\beta -62 Fe are investigated as examples. The results show that a weak magnetic field has little effect on βdecay but a strong magnetic field (B>1012G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.  相似文献   

2.
Using the Lennard-Jones interaction potential between the impurity atom and carbon atom, we have studied the dependence of in-tube impurity doping on the radius of a single-wall carbon nanotube (SWNT), as well as its helicity. The obtained results show that the radius of the most stably doped SWNT is different for different kinds of impurity atoms. This is useful for producing the required doped SWNT. In addition, it is found that the helicity of tube has a strong effect on the potential energy of the atoms doped in the SWNT.  相似文献   

3.
4.
First-principles calculations based on density functional theory are used to investigate the adsorptions and diffusions of carbon atoms on the surface and in the subsurface of Co(200). The preferred site for the carbon atom on the surface is the hollow site, and the preferred site in the subsurface is the octahedral site. There is charge transfer from the surface to the adsorbed carbon atom, and for the most favorable adsorbed structure the charge transfer is largest. Moreover, the energy barriers for the diffusions of carbon atoms on the surface and from the surface into the subsurface and then back to the surface are calculated in detail. The results indicate that the energy barrier for the diffusion of carbon atoms on the surface is comparable to that from the subsurface to the surface. The results imply that both the direct surface nucleation and the surface segregation from Co bulk can be observed in the chemical vapor deposition growth of graphene on Co(200)substrate, which can gain a new insight into the growth mechanism of graphene.  相似文献   

5.
Using density-functional calculations within the generalized gradient approximation (GGA)+U framework,we investigate the structural,electronic,and magnetic properties of the ground states of SrFeOn (n = 2 and 2.5).The magnetism calculations show that the ground states of both SrFeO2 and SrFeO2.5 have G type antiferromagnetic ordering,with indirect band gaps of 0.89 and 0.79 eV,respectively.The electronic structure calculations demonstrate that Fe cations are in the high-spin state of (dz2 )2(dxz,dyz)2(dxy)1(dx2 y2 )1(S = 2),unlike the previous prediction of (dxz,dyz)3(dxy)1(dz2 )1(dx2 y2 )1(S = 2) for SrFeO2,and in the high-spin state of (dxy,dxz,dyz,dx2 y2 ,dz2 )5(S = 5/2) for SrFeO2.5.  相似文献   

6.
颜玉珍  胡梁宾 《中国物理 B》2010,19(4):47203-047203
We study theoretically the influence of spin--orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin--orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba two-dimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.  相似文献   

7.
解忧  张建民 《中国物理 B》2011,20(12):127302-127302
Under the generalized gradient approximation, the electronic structures and magnetic properties of Fe(1-x)Cox alloy nanowires encapsulated inside zigzag (10,0) carbon nanotubes (CNTs) are investigated systematically using firstprinciple density functional theory calculations. For the fully relaxed Fe(1-x)Cox/CNT structures, all the C atoms relax outwards, and thus the diameters of the CNTs are slightly increased. Formation energy analysis shows that the combining processes of all Fe(1-x)Cox/CNT systems are exothermic, and therefore the Fe(1-x)Coxalloy nanowires can be encapsulated into semiconducting zigzag (10,0) CNTs and form stable hybrid structures. The charges are transferred from the Fe(1-x)Coxnanowires to the more electronegative CNTs, and the Fe-C/Co-C bonds formed have polar covalent bond characteristics. Both the spin polarization and total magnetic moment of the Fe(1-x)Cox/CNT system are smaller than those of the corresponding freestanding Fe(1-x)Coxnanowire, and the magnetic moment of the Fe(1-x)Cox/CNT system decreases monotonously with increasing Co concentration, but the Fe(1-x)Cox/CNT systems still have a large magnetic moment, implying that they can be utilized in high-density magnetic recording devices.  相似文献   

8.
Using the variational method and the effective mass and parabolic band approximations, the behaviour of the binding energy and photo-ionization cross section of a hydrogenic-like donor impurity in an InAs quantum ring, with Pöschl-Teller confinement potential along the axial direction, has been studied. In the investigation, the combined effects of hydrostatic pressure and electric and magnetic fields applied in the direction of growth have been taken into account. Parallel polarization of the incident radiation and several values of the applied electric and magnetic fields, hydrostatic pressure, and parameters of the Pöschl-Teller confinement potential were considered. The results obtained can be summarised as follows: (1) the influence of the applied electric and magnetic fields and the asymmetry degree of the Pöschl-Teller confinement potential on the donor binding energy is strongly dependent on the impurity position along the growth and radial directions of the quantum ring, (2) the binding energy is an increasing function of hydrostatic pressure and (3) the decrease (increase) in the binding energy with the electric and magnetic fields and parameters of the confinement potential (hydrostatic pressure) leads to a red shift (blue shift) of the maximum of the photo-ionization cross section spectrum of the on-centre impurity.  相似文献   

9.
王玉梅  任俊峰  原晓波  窦兆涛  胡贵超 《中国物理 B》2012,21(10):108508-108508
From experimental results of spin polarized injection and transport in organic semiconductors(OSCs),we theoretically study the current spin polarization and magnetoresistance under an electric and a magnetic field in a ferromagnetic/organic semiconductor/ferromagnetic(FM/OSC/FM) sandwich structure according to the spin drift-diffusion theory and Ohm’s law.From the calculations,it is found that the interfacial current spin polarization is enhanced by several orders of magnitude through tuning the magnetic and electric fields by taking into account the specific characteristics of OSC.Furthermore,the effects of the electric and magnetic fields on the magnetoresistance are also discussed in the sandwich structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号