首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
顾建兵  杨向东  王怀谦  李慧芳 《中国物理 B》2012,21(4):43102-043102
The geometrical structures, relative stabilities, electronic and magnetic properties of small B n Al (2 ≤ n ≤ 9) clusters are systematically investigated by using the first-principles density functional theory. The results show that the Al atom prefers to reside either on the outer-side or above the surface, but not in the centre of the clusters in all of the most stable B n Al (2 ≤ n ≤ 9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters. All the results of the analysis for the fragmentation energies, the second-order difference of energies, and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B 4 Al and B 8 Al clusters each have a higher relative stability. Especially, the B 8 Al cluster has the most enhanced chemical stability. Furthermore, both the local magnetic moments and the total magnetic moments display a pronounced odd-even oscillation with the number of boron atoms, and the magnetic effects arise mainly from the boron atoms except for the B 7 Al and B 9 Al clusters.  相似文献   

2.
The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry. The clusters with 4, 8 and 10 atoms are found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gaps. The Nbn clusters possess low magnetic moments, which exhibit an odd-even oscillational character. The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n = 2, 3, 5, 7, 9, 11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases, while they are located on two Nb atoms for n = 2, 3, 5. The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.  相似文献   

3.
The geometries,electronic and magnetic properties of the trimetallic clusters Fe Al Aun(n = 1–6) are systematically investigated using density functional theory(DFT).A number of new isomers are obtained to probe the structural evolutions.All doped clusters show larger relative binding energies than pure Aun+2partners,indicating that doping with Fe and Al atoms can stabilize the Aun clusters.The highest occupied molecular orbital–lowest unoccupied molecular orbital(HOMO–LUMO) gaps,vertical ionization potentials and vertical electron affinities are also studied and compared with those of pure gold clusters.Magnetism calculations demonstrate that the magnetic moments of Fe Al Aun clusters each show a pronounced odd–even oscillation with the number of Au atoms.  相似文献   

4.
阮文  谢安东  余晓光  伍冬兰 《中国物理 B》2011,20(4):43104-043104
The most stable isomers of NanBm(m+n=6) clusters and their hydrogen storage properties are investigated by means of density functional theory with a 6-311+G(d) basis set. To study the hydrogen storage properties,all of the stable structures of Na n BmHx (m+n=6) clusters have been optimized. It shows that boron atoms of Na n B m are separated from the other boron atoms,and form satellite BHx (x=3,4) clusters around the centre,which attach to the system by a bridging bond of a hydrogen atom or an Na atom. Compared with the hydrogen storage capabilities,the Na3B3 has the highest hydrogen storage capacity among Na n B m clusters. The binding energies,interaction energies of hydrogen atom with Na n B m clusters and second difference in energy of Na3B3Hx clusters have been calculated. The results show that the stability of the Na n B m H x clusters present an odd-even oscillatory effect,as the number of H atoms increases.  相似文献   

5.
The equilibrium geometries, relative stabilities, and electronic properties of Ca2Sin (n = 1-11) clusters have been systematically investigated by using the density function theory at the 6-311G (d) level The optimized geometries indicate that the most stable isomers have three-dimensional structures for n = 3-11. The electronic properties of Ca2 Sin (n = 1-11) dusters axe obtained through the analysis of the natural charge population, natural electron configuration, vertical ionization potential, and vertical electron affinity. The results show that the charges in corresponding Ca2Sin clusters transfer from the Ca atoms to the Sin host. Based on the obtained lowest-energy geometries, the size dependence of cluster properties, such as averaged binding energies, fragmentation energies, second-order energy differences, HOMO- LUMO gaps and chemical hardness, are deeply discussed.  相似文献   

6.
Equilibrium geometries, stabilities, and electronic properties of small Ti_mZr_n(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials(VIP), and vertical electron affinities(VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H_2 when compared with the others except Ti_3Zr, which shows the highest activity. The magnetic moments of Ti_mZr_n and Ti_mZr_nH_2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti_3Zr_2.  相似文献   

7.
卢章辉  曹觉先 《中国物理 B》2008,17(9):3336-3342
Based on the density-functional theory, this paper studies the geometric and magnetic properties of TinO (n=1-9) clusters. The resulting geometries show that the oxygen atom remains on the surface of clusters and does not change the geometry of Tin significantly. The binding energy, second-order energy differences with the size of clusters show that Ti7O cluster is endowed with special stability. The stability of TinO clusters is validated by the recent time-of-flight mass spectra. The total magnetic moments for TinO clusters with n=1-4, 8-9 are constant with 2 and drop to zero at n=5-7. The local magnetic moment and charge partition of each atom, and the density of states are discussed. The magnetic moment of the TinO is clearly dominated by the localized 3d electrons of Ti atoms while the oxygen atom contributes a very small amount of spin in TinO clusters.  相似文献   

8.
徐晓光  杨海龄  吴勇  张德林  姜勇 《中国物理 B》2012,21(4):47504-047504
First-principles calculations based on density functional theory are performed to study the origin of ferromagnetism in boron-doped ZnO. It is found that boron atoms tend to reside at Zn sites. The induced Zn vacancy is a key factor for ferromagnetism in Zn1-xBxO (0相似文献   

9.
The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.  相似文献   

10.
This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSin (n = 1-6) clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSin(n = 1-6) isomers keep an analogous framework of the corresponding Sin+1 clusters, the RhSi3 is the most stable cluster in RhSin (n = 1-6) isomers. Furthermore, the charges of the lowest-energy RhSin (n = 1-6) clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSin(n = 1-6) arises from the 4d orbits of Rh atom. Finally, compared with the Sin+1 cluster, the chemical stability RhSin clusters are universally improved.  相似文献   

11.
李听昕  王林  王飞  陈军  姜振益  李莉莎 《中国物理 B》2011,20(3):33101-033101
This paper investigates the geometrical structures and relative stabilities of neutral AlS n(n = 2-9) using the density functional theory.Structural optimisation and frequency analysis are performed at the B3LYP/6-311G(d) level.The ground state structures of the AlS n show that the sulfur atoms prefer not only to evenly distribute on both sides of the aluminum atom but also to form stable structures in AlS n clusters.The structures of pure S n are fundamentally changed due to the doping of the Al atom.The fragmentation energies and the second-order energy differences are calculated and discussed.Among neutral AlS n(n = 2-9) clusters,AlS 4 and AlS 6 are the most stable.  相似文献   

12.
史顺平  张传瑜  赵晓凤  李侠  闫珉  蒋刚 《中国物理 B》2017,26(8):83103-083103
Density functional theory(DFT) with the B3 LYP method and the SDD basis set is selected to investigate In_nNi,In_nNi~-, and In_nNi~+ (n = 1–14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic In_nNi clusters, which favors the three-dimensional structures for n = 3–14. The main configurations of the In_nNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In_(13) cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. The electronic properties including energy gap(E_g), adiabatic electron affinity(AEA), vertical electron detachment energy(VDE), adiabatic ionization potential energy(AIP), and vertical ionization potential energy(VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged In_nNi. Additionally, the natural population analysis of In_nNi~((0,±1)clusters is also discussed.  相似文献   

13.
刘霞  赵高峰  郭令举  王献伟  张俊  井群  罗有华 《中国物理》2007,16(11):3359-3369
The equilibrium geometries and electronic properties of CumSin (2 ≤m + n ≤ 7) clusters have been studied by using density functional theory at the B3LYP/6-311+G (d) level. Our results indicate that the structure of CuSin (n 〈6) keeps the frame of the corresponding Sin cluster unchanged, while for CunSi clusters, the rectangular pyramid structure of Cu4Si is shown to be a building block in many structures of larger CunSi clusters. The growth patterns of CumSin clusters become more complicated as the number of Cu atoms increases. Both the binding energies and the fragmentation energies indicate that the Si-Si bond is stronger than the Cu-Si bond, and the latter is stronger than the Cu-Cu bond. Combining the fragmentation energies in the process CumSin →Cu+Cum-l Sin and the second-order difference △2E(m) against the number of Cu atoms of CumSin, we conclude that CumSin clusters with even number of Cu atoms have higher stabilities than those with odd rn. According to frontier orbital analyses, there exists a mixed ionic and covalent bonding picture between Cu and Si atoms, and the Cud orbitals contribute little to the Cu-Si bonding. For a certain cluster size (m + n = 3, 4, 5, 6, 7), the energy gaps of the most stable CumSin clusters show odd-even oscillation with changing m, the clusters with odd m exhibit stronger chemical reactivity than those with even m.[第一段]  相似文献   

14.
The structural and magnetic properties of Fen-m Gam (n=3 ~ 6,m=0 ~ 2;n=13,m=0 ~ 3) alloy clusters have been studied using density functional theory.The substitutional doping is favourable for small clusters with up to six atoms at low Ga concentration and substitutional Ga atoms in 13-atom clusters prefer surface sites.The Ga-doping generally could reduce the energetic stability but enhance the electronic stability of Fe clusters,along with a decrease of the local magnetic moments of Fe atoms around Ga dopants.These findings provide a microscopic insight into Fe-Ga alloys which are well-known magnetostriction materials.  相似文献   

15.
The geometries of Mg n Ni 2(n = 1-6) clusters are studied by using the hybrid density functional theory(B3LYP) with LANL2DZ basis sets.For the ground-state structures of Mg n Ni 2 clusters,the stabilities and the electronic properties are investigated.The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms.The average binding energies have a growing tendency while the energy gaps have a declining tendency.In addition,the ionization energies exhibit an odd-even oscillation feature.We also conclude that n = 3,5 are the magic numbers of the Mg n Ni 2 clusters.The Mg 3 Ni 2 and Mg 5 Ni 2 clusters are more stable than neighbouring clusters,and the Mg 4 Ni 2 cluster exhibits a higher chemical activity.  相似文献   

16.
谢尊  马庆敏  王静  刘英  李有成 《中国物理》2007,16(12):3637-3641
The structural stability and magnetic properties of the icosahedral Ni13, Ni13^+1 and Ni13^-1 clusters have been obtained by utilizing all-electron density functional theory with the generalized gradient approximations for the exchange-correlation energy. The calculated results show that the ground states of neutral and charged clusters all favour a D3d structure, a distorted icosahedron, due to the Jahn-Teller effect. The radial distortions caused by doping one electron and by doping one hole are opposite to each other. Doping one electron will result in a 1/2 decrease and doping one hole will result in a 1/2 increase of the total spin. Both increasing interatomic spacing and decreasing coordination will lead to an enhancement of the spin magnetic moments for Nil3 clusters.  相似文献   

17.
The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method. The stability of the structure of the clusters was studied by calculating the average binding energy per atom, first difference energy and second difference energy of copper cluster. Most of the copper clusters of the size n=70-150 adopt an icosahedral structure. The results show that the trends are in agreement with theoretic prediction for copper clusters. The most stable structures for copper clusters are found at n=77, 90, 95, 131, 139.  相似文献   

18.
张川晖  崔航  申江 《中国物理 B》2012,21(10):103102-103102
The structure and the magnetic moment of transition metal encapsulated in a Au 12 cage cluster have been studied by using the density functional theory.The results show that all of the transition metal atoms(TMA) can embed into the Au 12 cage and increase the stability of the clusters except Mn.Half of them have the I h or O h symmetry.The curves of binding energy have oscillation characteristics when the extra-nuclear electrons increase;the reason for this may be the interaction between parity changes of extra-nuclear electrons and Au atoms.The curves of highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap also have oscillation characteristics when the extra-nuclear electrons increase.The binding energies of many M@Au 12 clusters are much larger than that of the pure Au 13 cluster,while the gaps of some of them are less than that of Au 13,so maybe Cr@Au 12,Nb@Au 12,and W@Au 12 clusters are most stable in fact.For magnetic calculations,some clusters are quenched totally,but the Au 13 cluster has the largest magnetic moment of 5 μ B.When the number of extra-nuclear electrons of the encapsulated TMA is even,the magnetic moment of relevant M@Au 12 cluster is even,and so are the odd ones.  相似文献   

19.
陈冬冬  邝小渝  赵亚儒  邵鹏  李艳芳 《中国物理 B》2011,20(6):63601-063601
We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . . . , 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.  相似文献   

20.
The structure, electronic and magnetic properties of HoSin(n= 1 - 12, 20) clusters have been widely investigated by first-principles calculation method based on density flmctional theory (DFT). From our calculation results, we find that for HoSin(n=1- 12) clusters except n = 7.10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin (n = 1 - 12, 20) clusters mainly comes from of electron of tto, and never quenches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号