首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reaction of anhydrous YCl3 with an equimolar amount of lithium N,N'-diisopropyl-N' '-bis(trimethylsilyl)guanidinate, Li[(Me3Si)2NC(Ni-Pr)2], in tetrahydrofuran (THF) afforded the monomeric monoguanidinate dichloro complex {(Me3Si)2NC(Ni-Pr)2}YCl2(THF)2 (1). Alkylation of complex 1 with 2 equiv of LiCH2SiMe3 in hexane at 0 degrees C yielded the monomeric salt-free dialkyl complex {(Me3Si)2NC(Ni-Pr)2}Y(CH2SiMe3)2(THF)2 (2). The bis(triethylborohydride) complex [(Me3Si)2NC(Ni-Pr)2]Y[(mu-H)(mu-Et)2BEt]2(THF) (5) was prepared by the reaction of complex 1 with 2 equiv of LiBEt3H in a toluene-THF mixture at 0 degrees C. The complexes 1, 2, and 5 were structurally characterized. Complex 2 as well as the systems 2-Ph3B, 2-Ph3B-MAO, and 1-MAO (MAO = methylaluminoxanes) in toluene were inactive in ethylene polymerization, while the product obtained in situ from the reaction of complex 2 with a 2-fold molar excess of PhSiH3 in toluene polymerized ethylene with moderate activity.  相似文献   

3.
The (15)N-labeled diammine(mu-oxo)ruthenium complex cis,cis-[(bpy)(2)(H(3)(15)N)Ru(III)ORu(III)((15)NH(3))(bpy)(2)](4+) ((2-(15)N)(4+)) was synthesized from cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) by using ((15)NH(4))(2)SO(4) and isolated as its perchlorate salt in 17% yield. A 1:1 mixture of (2-(15)N)(4+) and nonlabeled cis,cis-[(bpy)(2)(H(3)(14)N)Ru(III)ORu(III)((14)NH(3))(bpy)(2)](4+) were electrochemically oxidized in aqueous solution. The gaseous products (14)N(2) and (15)N(2) were formed in equimolar amounts with only a small amount of (14)N(15)N detected. This demonstrates that dinitrogen formation by oxidation of the diammine complex proceeds by intramolecular N---N coupling.  相似文献   

4.
5.
6.
CrystalStructureof[Ru(taab)(DMF)_2]·[(CIO_4)_2]¥DuanChun-Ying;LuZhong-Lin;TianYu-Peng;YouXiao-Zeng;ChenYao(CoordinationChemist?..  相似文献   

7.
8.
An X-ray diffraction study of the single crystals of (C2H7N4O)2[(UO2)2(OH)2(C2O4)(CHO2)2] was carried out. The compound crystallizes in the triclinic system, space group $P\bar 1$ , Z = 2, a = 5.5621(8) Å, b = 8.1489(10) Å, c = 11.8757(16) Å, α = 88.866(7)°, β = 82.204(6)°, γ = 87.378(6)°, V = 532.7(1) Å3, ρcalcd = 2.988 g/cm3. The main structural units in the crystal are the [(UO2)2(OH)2(C2O4)(CHO2)2)]2? chains corresponding to the crystal chemical group A2M 2 2 K02M 2 1 (A = UO 2 2+ , M2 = OH?, K02 = C2O 4 2? , M1 = CHO 2 ? ) of uranyl complexes. The chains are united into a three-dimensional framework through the electrostatic interaction and hydrogen bonds involving uranyl, oxalate, and hydroxyl groups, formate ions, and 1-carbamoylguanidinium cations.  相似文献   

9.
10.
The magnetic exchange interactions in a C0(3)(11) moiety encapsulated in Na(17) [(NaOH(2))Co(3)(H(2)O)(P(2)W(15)O(56))(2)] (NaCo(3)) were studied by a combination of magnetic measurements (magnetic susceptibility and low-temperature magnetization), with a detailed Inelastic Neutron Scattering (INS) investigation. The novel structure of the salt was determined by X-ray crystallography. The ferromagnetic Co(3)O(14) triangular cluster core consists of three octahedrally oxo-coordinated Co(II) ions sharing edges. According to the single-ion anisotropy and spin-orbit coupling usually assumed for octahedral Co(II) ions, the appropiate exchange Hamiltonian to describe the ground-state properties of the isosceles triangular Co(3) spin cluster is anisotropic and is expressed as H = - 2sigma(alpha)(=)(x,y,z)(J(alpha)(12)S(1alpha)S(2alpha) + J(alpha)(23)S(2alpha)S(3alpha) + J(alpha)(13)S(1alpha)S(3alpha)), where J(alpha) are the components of the exchange interactions between the Co(II) ions. To reproduce the INS data, nonparallel anisotropic exchange tensors needed to be introduced, which were directly connected to the molecular symmetry of the complex. The following range of parameters (value +/- 0.5 cm(-1)) was found to reproduce all experimental information while taking magnetostructural relations into account: J(x)(12) = J(y)(13) = 8.6 cm(-1); J(y)(12) = J(x)(13) = 1.4 cm(-1); J(z)(12) = J(z)(13) = 10.0 cm(-1); J(x)(23) = J(y)(23) = 6.5 cm(-1) and = 3.4 cm(-1).  相似文献   

11.
12.
13.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

14.

Synthesis and X-ray structure analysis of host-guest complexes [(H4L)(SiF6)2-4H2O] (I) and [(H4L)(GeF6)2-4H2O] (II) are reported (L = meso-5,7,7,12,12,14-hexamethyl-l,4,8,11-tetraazacyclo-tetradecane). The crystals of both compounds are triclinic with close unit cell parameters. I: a = 9.576(3), b= 9.217(3), c= 8.334(2) å, α= 105.66(2), Ω= 83.68(2), α = 105.38(2)? II: a= 9.627(3), b = 9.358(3), c.= 8.497(4) A, a= 106.02(2), Ω = 83.74(2), α= 106.06(2)?. The structural units of the crystals are the (H4L)4+ cations, the hexafluorosilicate (or hexafluowgemanate) anions, and the water molecules linked by a system of H bonds. The macrocycle in the complexes has C1 symmetry. In the inorganic anions, the silicon as well as germanium atom is surrounded by an octahedron of six fluorine atoms.

  相似文献   

15.
Neptunium(V) perrhenate complex [(NpO2)(ReO4)(Phen)(H2O)2] was synthesized with 1,10-phenanthroline as a ligand. Its composition and structure were determined by X-ray diffraction analysis. The coordination polyhedron of the Np atom is a pentagonal bipyramid. The nearest surrounding of the neptunoyl ion includes the oxygen atom of the ReO4 anion, two nitrogen atoms of phenanthroline, and the oxygen atoms of two water molecules. The crystals of the compound are monoclinic. The main crystallographic parameters are the following: space group P21/c, unit cell parameters a = 7.288(1) Å, b = 10.513(2) Å, c = 20.936(4) Å, = 96.939(5)°, Z = 4, V = 1592.2(5) Å3. Absorption spectra of the compound in visible and IR regions are reported.  相似文献   

16.
Dias HV  Jin W 《Inorganic chemistry》1996,35(22):6546-6551
The N-methyl-2-(methylamino)troponimine [(Me)(2)ATI]H reacts with bis[bis(trimethylsilyl)amido]tin(II) to yield [(Me)(2)ATI](2)Sn in excellent yield. The treatment of [(Me)(2)ATI](2)Sn with GaI and InCl led to the bis(ligand)gallium(III) and -indium(III) compounds [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl. These metal complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. All three metal adducts show fluxional behavior in solution at room temperature. [(Me)(2)ATI](2)Sn exhibits a pseudo trigonal bipyramidal structure in the solid state. The gallium and indium atoms in [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl adopt trigonal bipyramidal geometry around the metal center with the halide occupying an equatorial site. A convenient, high-yield route to [(Me)(2)ATI]H is also reported. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 183 K: [(Me)(2)ATI](2)Sn, C(18)H(22)N(4)Sn, a = 8.4347(11) ?, b = 10.5564(13) ?, c = 11.5527(11) ?, alpha = 66.931(8) degrees, beta = 73.579(9) degrees, gamma = 67.437(7) degrees, V = 863.3(2) ?(3), triclinic, space group P&onemacr;, Z = 2, R = 0.0224; [(Me)(2)ATI](2)GaI, C(18)H(22)GaIN(4), a = 12.947(2) ?, b = 9.5834(9) ?, c = 16.0132(12) ?, beta = 107.418(8) degrees, V = 1895.8(3) ?(3), monoclinic, space group P2(1)/c, Z = 4, R = 0.0214; [(Me)(2)ATI](2)InCl, C(18)H(22)ClInN(4), a = 24.337(3) ?, b = 8.004(2) ?, c = 19.339(3) ?, beta = 101.537(13) degrees, V = 3691.1(11) ?(3), monoclinic, space group C2/c, Z = 8, R = 0.0224.  相似文献   

17.
This study investigated the relationship of growth conditions, host strains and molecular weights of poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesized by genetically engineered Escherichia coli. Various PHA synthases belonging to types I-IV enzymes were expressed in E. coli JM109 under the same experimental conditions, and the molecular weights of the polymers were characterized by gel permeation chromatography. The results demonstrate that P(3HB) polymers have varied molecular weights and polydispersities dependent on the characteristics of the individual PHA synthase employed. P(3HB) with high number-average molecular weights (Mn) [(1.5-4.0) × 106] and narrow polydispersities (1.6-1.8) were synthesized by PHA synthases from Ralstonia eutropha (type I), Delftia acidovorans (type I) and Allochromatium vinosum (type III). Contrary to these, P(3HB) with relatively low Mn [(0.17-0.79) × 106] and broad polydispersities (2.2-9.0) were synthesized by PHA synthases from Aeromonas caviae (type I), Pseudomonas sp. 61-3 (type II) and Bacillus sp. INT005 (type IV). Furthermore, the molecular weights of P(3HB) synthesized under various culture conditions, in various hosts of E. coli and by mutants of PHA synthase were characterized. It was found that, in addition to culture pH [Kusaka et al. Appl Microbiol Biotechnol 1997;47:140], other variances such as culture temperature, host strain and use of mutants are effective in changing polymer molecular weight.  相似文献   

18.
Russian Journal of Electrochemistry - Electrochemical oxidation of catechol has been studied in the presence of ketamine as a drug in phosphate buffer solution mixed with ethanol using voltammetric...  相似文献   

19.
Synthetically prepared boltwoodite and compreignacite were characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The obtained TRLFS emission spectra of both synthesized uranium minerals differ from each other in their positions of the vibronic peak maxima and in their fluorescence lifetimes. Also, the shapes of the spectra and their respective intensities are different. The TRLFS-spectrum of boltwoodite showed well-resolved sharp vibronic peaks at 485.1, 501.5, 521.2, 543.0, 567.4, and 591.4nm with deep notches between them and compreignacite is characterized by two broad peaks with various shoulders. Here five emission bands were identified at 500.7, 516.1, 532.4, 554.3, and 579.6nm. The shape of the TRLFS spectra of compreignacite is typical for uranium in a hydroxide coordination environment. For both minerals two fluorescence lifetimes were extracted. The two species of boltwoodite and compreignacite, respectively, showed the same positions of the peak maxima showing that the coordination environments are similar, but differ in the chemistry and number of possible quenchers, e.g. water molecules and hydroxide groups. For boltwoodite fluorescence lifetimes of 382 and 2130ns, and for compreignacite shorter ones of 202 and 914ns, respectively, were determined. The spectroscopic signatures of the two uranyl minerals reported here could be useful for identifying uranyl(VI) mineral species as colloids, as thin coatings on minerals, as minor component in soils, or as alteration products of nuclear waste.  相似文献   

20.
The first designed molecular catalyst for water oxidation is the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+). Although there is experimental evidence for extensive electronic coupling across the μ-oxo bridge, results of earlier DFT and CASSCF calculations provide a model with magnetic interactions of weak to moderately coupled Ru(III) ions across the μ-oxo bridge. We present the results of a comprehensive experimental investigation, combined with DFT calculations. The experiments demonstrate both that there is strong electronic coupling in the blue dimer and that its effects are profound. Experimental evidence has been obtained from molecular structures and key bond distances by XRD, electrochemically measured comproportionation constants for mixed-valence equilibria, temperature-dependent magnetism, chemical properties (solvent exchange, redox potentials, and pK(a) values), XPS binding energies, analysis of excitation-dependent resonance Raman profiles, and DFT analysis of electronic absorption spectra. The spectrum can be assigned based on a singlet ground state with specific hydrogen-bonding interactions with solvent molecules included. The results are in good agreement with available experimental data. The DFT analysis provides assignments for characteristic absorption bands in the near-IR and visible regions. Bridge-based dπ → dπ* and interconfiguration transitions at Ru(III) appear in the near-IR and MLCT and LMCT transitions in the visible. Reasonable values are also provided by DFT analysis for experimentally observed bond distances and redox potentials. The observed temperature-dependent magnetism of the blue dimer is consistent with a delocalized, diamagnetic singlet state (dπ(1)*)(2) with a low-lying, paramagnetic triplet state (dπ(1)*)(1)(dπ(2)*)(1). Systematic structural-magnetic-IR correlations are observed between ν(sym)(RuORu) and ν(asym)(RuORu) vibrational energies and magnetic properties in a series of ruthenium-based, μ-oxo-bridged complexes. Consistent with the DFT electronic structure model, bending along the Ru-O-Ru axis arises from a Jahn-Teller distortion with ∠Ru-O-Ru dictated by the distortion and electron-electron repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号