首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosensitized splitting of cis-syn- and trans-syn-l,3-dimethyluracil dimers by 2′,3′,4′,5′-tetraacetylri-boflavin in acetonitrile containing a trace of perchloric acid was studied by laser flash photolysis. Protonation of the flavin prior to excitation resulted in excited singlet and triplet states that abstracted an electron from the dimers and yielded the protonated flavin radical (F1H2+), which was detected by absorption spectroscopy. Electron abstraction by the excited singlet state predominated over abstraction by the triplet state. Approximately one-third to one-half of the excited states quenched by the trans-syn dimer yielded F1H2+, the balance presumably undergoing back electron transfer within the geminate radical ion pair generated by the initial electron transfer. A covalently linked dimer-flavin exhibited very inefficient flavin radical ion formation, consistent with the known low efficiency of dimer splitting in this system. These results constitute the first identification of a flavin radical ion intermediate in photosensitized pyrimidine dimer splitting.  相似文献   

2.
A series of photo-CIDNP (chemically induced dynamic nuclear polarization) experiments were performed on pyrimidine monomers and dimers, using the electron-donor Nα-acetyltryptophan (AcTrp) as a photosensitizer. The CIDNP spectra give evidence for the existence of both the dimer radical anion, which is formed by electron transfer from the excited AcTrp* to the dimer, and its dissociation product, the monomer radical anion. The AcTrp spectra are completely different from those obtained with an oxidizing sensitizer like anthraquinone-2-sulfonate, because of different unpaired electron spin density distributions in pyrimidine radical anion and cation. In the spectra of the anti (1,3-dimethyluracil) dimers, polarization is detected that originates from a spin-sorting process in the dimer radical pair, pointing to a relatively long lifetime of the dimer radical anions involved. Although the dimer radical anions of the 1,1′-trimethylene-bridged pyrimidines may have a relatively long lifetime as well, their protons have only very weak hyperfine interaction, which explains why no polarization originating from the dimer radical pair is detected. In the spectra of the bridged pyrimidines, polarized dimer protons are observed as a result of spin sorting in the monomer radical pair, from which it follows that the dissociation of dimer radical anion into monomer radical anion is reversible. A study of CIDNP intensities as a function of pH shows that a pH between 3 and 4 is optimal for observing monomer polarization that originates from spin-sorting in the monomer radical pair. At higher pH the geminate recombination polarization is partly cancelled by escape polarization arising in the same product.  相似文献   

3.
The light-induced splitting of pyrimidine dimers was studied using the electron acceptor anthraquinone-2-sulfonate (AQS) as a photosensitizer. To this end, photochemically induced dynamic nuclear polarization (photo-CIDNP) experiments were performed on a series of pyrimidine monomers and dimers. The CIDNP spectra demonstrate the existence of both the dimer radical cation, which is formed by electron transfer from the dimer to the photoexcited sensitizer AQS*, and its dissociation product, the monomer radical cation. In spectra of 1,1′-trimethylene bridged cis,syn pyrimidine dimers, polarization is observed that originates from a spin-sorting process in the dimer radical pair. This points to a relatively long lifetime of the dimer radical cation involved, which is presumably due to stabilization by the trimethylene bridge. Polarization originating from a dimer radical pair is detected in the spectrum of trans,anti (1,3-dimethyluracil) dimer as well. The spectra of the bridged pyrimidines also demonstrate the reversibility of the dissociation of dimer radical cation into monomer radical cation, which is concluded from the observation of polarization in the dimer as a result of spin sorting in the monomer radical pair.  相似文献   

4.
Abstract— A cis, syn -pyrimidine dimer (derived from thymine and orotate) covalently linked to 5-methoxyindole has been studied as a mechanistic model of photosensitized pyrimidine dimer splitting. In this dimer-indole, photoinitiated electron transfer to the dimer causes splitting in a manner that parallels the mechanism by which the DNA photolyases are thought to act. Dissolved in EPA (diethyl ether-isopentane-ethyl alcohol, 5: 5: 1, by vol) at room temperature, the dimer-indole exhibited indole fluorescence quenching and underwent splitting upon irradiation at 300 nm. In an EPA glass at 77 K, however, no splitting was detectable. To distinguish the effects of temperature and immobilization, photolysis experiments were performed on PMM [poly(methyl methacrylate)] films containing dimer-indole. In PMM at room temperature, dimer-indole underwent splitting when irradiated at 300 nm, which indicated that immobilization per se was not responsible for the failure of dimer-indole to split at low temperature. Furthermore, no splitting was observed when dimer-indole was irradiated in PMM at 77 K. These results imply that a step following photoinitiated, intramolecular electron transfer from indole to dimer has an insurmountable activation barrier at 77 K. The mechanistic implications for the photolyases are considered.  相似文献   

5.
Cyclobutadipyrimidines (pyrimidine dimers) undergo splitting that is photosensitized by indole derivatives. We have prepared a compound in which a two-carbon linker connects a dimer to an indolyl group. Indolyl fluorescence quenching indicated that the two portions of the molecule interact in the excited state. Intramolecular photosensitization of dimer splitting was remarkably solvent dependent, ranging from phi spl = 0.06 in water to a high value of phi spl = 0.41 in the least polar solvent mixture examined, 1,4-dioxane-isopentane(5 : 95). A derivative with a 5-methoxy substituent on the indolyl ring behaved similarly. These results have been interpreted in terms of electron transfer from the excited indolyl group to the dimer, which would produce a charge-separated species. The dimer anion within such a species could split or undergo back electron transfer. The possibility that back electron transfer is in the Marcus inverted region can be used to rationalize the observed solvent dependence of splitting. In the inverted region, the high driving force of a charge recombination exceeds the reorganization energy of the solvent, which is less for solvents of low polarity than those of high polarity. If this theory is applicable to the hypothetical charge-separated species, a slower back electron transfer, and consequently higher splitting efficiencies, would be expected in solvents of lower polarity. Photolyases may have evolved in which a low polarity active site retards back transfer of an electron and thereby contributes to the efficiency of the enzymatic dimer splitting.  相似文献   

6.
Abstract— Photosensitized pyrimidine dimer splitting characterizes the enzymatic process of DNA repair by the DNA photolyases. Possible pathways for the enzymatic reaction include photoinduced electron transfer to or from the dimer. To study the mechanistic photochemistry of splitting by a sensitizer representative of excited state electron donors, a compound in which an indole is covalently linked to a pyrimidine dimer has been synthesized. This compound allowed the quantitative measurement of the quantum efficiency of dimer splitting to be made without uncertainties resulting from lack of extensive preassociation of the unlinked dimer and sensitizer free in solution. Irradiation of the compound with light at wavelengths absorbed only by the indolyl group (approximately 280 nm) resulted in splitting of the attached dimer. The quantum yield of splitting of the linked system dissolved in N20-saturated aqueous solution was found to be 0.04 ± 0.01. The fluorescence typical of indoles was almost totally quenched by the attached dimer. A splitting mechanism in which an electron is efficiently transferred intramolecularly from photoexcited indole to ground state dimer has been formulated. The surprisingly low quantum yield of splitting has been attributed to inefficient splitting of the resulting dimer radical anion. Insights gained from this study have important mechanistic implications for the analogous reaction effected by the DNA photolyases.  相似文献   

7.
Abstract— Intramolecularly photosensitized pyrimidine dimer splitting can serve as a model for some aspects of the monomerization of dimers in the enzyme-substrate complex composed of a photolyase and UV-damaged DNA. We studied compounds in which a pyrimidine dimer was covalently linked either to indole or to 5-methoxyindole. Laser flash photolysis studies revealed that the normally observed photoejection of electrons from the indole or the 5-methoxyindole to solvent was diminished by an order of magnitude for indoles with dimer attached (dimer-indole and dimer-methoxyindole). The fluorescence lifetime of dimer-indole in aqueous methanol was 0.85 ns, whereas that of the corresponding indole without attached dimer (tryptophol) was 9.7 ns. Similar results were obtained for the dimer-methoxyindole (0.53 ns) and 5-methoxytryptophol (4.6 ns). The quantum yield of dimer splitting for the dimer-methoxyindole (φ287K7 = 0.08) was only slightly greater than the value found earlier for the dimer bearing the unsubstituted indole (4>2K7= 0.04). Transient absorption spectroscopy also revealed lower yields of indole radical cations following laser flash photolysis of dimer-indole compared to the indole without attached dimer. Dimer-methoxyindole behaved similarly. These results are interpreted in terms of an enhanced rate of radiationless relaxation of the indole and methoxyindole excited singlet states in dimer-indoles. The possible quenching of the indole and methoxyindole excited states via electron abstraction by the covalently linked dimer is discussed.  相似文献   

8.
A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of carboxymethyllumiflavin-sensitized splitting of pyrimidine dimers has been carried out. In aqueous solution at high pH, an emission signal (delta 3.9 ppm) was observed from the dimer C(6)- and C(6')-protons of an N(1), N(1')-trimethylene-bridged thymine dimer (1). The dimer photo-CIDNP signal was seen only above pD 11.6 and was most intense at pD 12.9. Also observed were weak enhanced absorption signals from the product of splitting, trimethylenebis(thymine) (delta 1.7 and 7.2 ppm). In contrast, cis, syn-thymine dimer (3) gave no photo-CIDNP signals from the dimer. An enhanced absorption at 1.8 ppm, however, due to the product of splitting (thymine) was observed. It was found that dimer 1 and, to a lesser extent, dimer 3 quenched flavin fluorescence. An N(3),N(3')-dimethylated derivative of 1, however, failed to quench flavin fluorescence. Comparison of the pD profile of the dimer photo-CIDNP signal to the pKa values for thymidine dimer suggested that principally the dideprotonated dimer undergoes electron abstraction by the excited flavin.  相似文献   

9.
PYRIMIDINE DIMER FORMATION IN HUMAN SKIN   总被引:1,自引:0,他引:1  
Cyclobutyl pyrimidine dimers are major photoproducts formed upon irradiation of DNA with ultraviolet light. We have developed a method for detecting as few as one pyrimidine dimer per million bases in about 50 ng of non-radioactive DNA, and have used this method to quantitate dimer yields in human skin DNA exposed in situ to UV. We found that UVA radiation (320–400 nm) produces detectable levels of dimers in the DNA of human skin. We also measured UVB-induced dimer yields in skin of individuals of differing sun sensitivity and found higher yields in individuals with higher UVB minimal erythema doses and greater sun sensitivity. These approaches should provide important information on damage induced in human skin upon exposure to natural or artificial sources of ultraviolet radiation.  相似文献   

10.
PHOTOSENSITIZED SPLITTING OF PYRIMIDINE DIMERS   总被引:1,自引:0,他引:1  
Abstract— The photosensitized monomerization of cis-syn and trans-syn cyclobutane-type thymine dimers, and the cis-syn thymine-uracil dimer, using anthraquinone derivatives as sensitizers, is described.  相似文献   

11.
Abstract— The formation of pyrimidine dimers on ultraviolet irradiation of TMV-RNA in water is demonstrated in the region from 254 nm to 302 nm. No dimer is present in either unirradiated E. coli ribosomal RNA or TMV-RNA. Dimer formation was also examined in TMV-RNA irradiated in the presence of 5times10-6 M proflavin, in high salt, on dry ice, and in 90% methanol. No correlation of pyrimidine dimers with any biologically defined lesion is presently possible and it is suggested that dimer may not be involved in the inactivation of this material.  相似文献   

12.
Abstract In the presence of sunlamp radiation, p -aminobenzoic acid sensitizes pyrimidine dimer formation in the DNA of human skin fibroblasts. It also sensitizes the sunlamp-induced transformation of such cells to anchorage-independent growth.  相似文献   

13.
14.
Abstract —Indole derivatives, such as serotonin or the oligopeptide Lys-Trp-Lys, are able to photosensitize the splitting of thymine dimers in DNA. These indole derivatives have to be bound to DNA in order to efficiently photosensitize the splitting reaction. Serotonin may also induce the photosensitized formation of thymine-containing dimers in native DNA. In this case, an equilibrium is reached when 5 per cent of the total thymines are dimerized. In both cases (splitting and dimer formation), the formation of electron donor-acceptor complexes between either dimers or two adjacent thymine monomers, and excited indole rings, could be an intermediate step in the reactions. Thymine-dimer splitting would then result from an electron transfer reaction involving the indole ring as the electron donor. These results are discussed with respect to the mechanism of action of the photoreactivating enzyme.  相似文献   

15.
Abstract Redox photosensitization using the phenanthrene-p-dicyanobenzene pair in acetonitrile has been applied to the respective four isomeric dimers of N.N′-dimethylthymine (DMT) and N,N′-dimethyluracil (DMU) as well as to several related cyclobutane compounds. The head-to-head (syn) dimers of both DMT and DMU can undergo photosensitized splitting in the following order of efficiency: cis, syn dimer of DMT > cis, syn dimer of DMU > trans, syn dimer of DMT. On the other hand, the head-to-tail (anti) dimers are totally unreactive and have higher oxidation potentials than the corresponding syn dimers. It is suggested that the key mechanistic pathway is the formation of π complexes between the dimers and the photo-generated cation radical of phenanthrene by way of which splitting of the cyclobutane ring catalytically occurs without the formation of the discrete cation radical of the dimers. Structure-reactivity relationships are interpreted in terms of through-bond interactions between the n orbitals of N(l) and N(l′) involving the C(6)-C(6′) bond, as well as in terms of steric repulsion. It was found that aeration of solution greatly enhances the quantum yields of photosensitized splitting; the limiting quantum yield for splitting of the cis, syn dimer of DMT is 100.  相似文献   

16.
17.
Abstract— DNA photolyases photorepair pyrimidine dimers (PyroPyr) in DNA as well as RNA and thus reverse the harmful effects of UV-A (320–400 nm) and UV-B (280–320 nm) radiations. Photolyases from various organisms have been found to contain two noncovalently bound cofactors; one is a fully reduced flavin adenine dinucleotide (FADH-) and the other, commonly known as second chromophore, is either methenyltetrahydrofolate (MTHF) or 8-hydroxydeazaflavin (8-HDF). The second chromophore in photolyase is a light-harvesting molecule that absorbs mostly in the near-UV and visible wavelengths (300–500 nm) with its high extinction coefficient. The second chromophore then transfers its excitation energy to the FADH-. Subsequently, the photoexcited FADH- transfers an electron to the Pyr<>Pyr generating a dimer radical anion (Pyr<>Pyr-) and a neutral flavin radical (FADH-). The Pyr<>Pyr- is very unstable and undergoes spontaneous splitting followed by a back electron transfer to the FADH-. In addition to the main catalytic cofactor FADH-, a Trp (Trp277 in Escherichia coli ) in apophotolyase, independent of other chromophores, also functions as a sensitizer to repair Pyr <> Pyr by direct electron transfer.  相似文献   

18.
离子色谱-抑制电导法分别测定海水中阴离子和阳离子   总被引:1,自引:0,他引:1  
采用离子交换-抑制电导法测定海水中阴、阳离子。采用抑制电导可以降低淋洗液的背景电导,又可以增加被测离子的电导值,改善信噪比。采用的电化学自身再生抑制器,由连续电解水产生抑制淋洗液所需要的H^+或者OH^-,加上电场引力,能用于高客量分离柱所用的淋洗液浓度和梯度淋洗。在试验条件下,利用阴离子和阳离子分离柱,配合抑制电导检测,可以同时分离和测定海水中7种阴离子和6种阳离子。且都可以得到很好的线性和较低的检出限。  相似文献   

19.
Abstract. Pyrimidine dimer sites associated with the newly-synthesized DNA were detected during post-replication repair of DNA in UV-irradiated human fibroblasts. These pyrimidine dimer sites were inferred from a decrease in the molecular weight of pulse-labelled DNA after treatment with an extract of Micrococcus luteus containing UV-specific endonuclease activity. In DNA synthesized immediately after irradiation the frequency of these daughter strand dimer sites was 7–20% of that in the parental DNA. Such sites were found in fibroblasts from normal donors and from xeroderma pigmentosum patients (with defects in excision-repair or post-replication repair). They were excised from the DNA of normal cells. As the time between UV-irradiation and pulse-labelling was increased, the frequency of dimer sites associated with the labelled DNA decreased. If the pulse-label was delivered 6 h after irradiation of normal cells or excision-defective xeroderma pigmentosum cells, no dimer sites were detected in the labelled DNA. It has usually been assumed that daughter-strand dimer sites were the result of recombinational exchanges. The assay procedure used in these experiments and in similar experiments of others did not distinguish between labelled DNA containing pyrimidine dimers within the labelled section, and labelled DNA which did not contain pyrimidine dimers but was attached to unlabelled DNA which did contain dimers. The latter structures would arise during normal replication immediately following UV-irradiation of mammalian cells. Calculations are presented which suggest that a significant proportion and conceivably all of the dimer sites associated with the daughter strands may have arisen in this way, rather than from recombinational exchanges as has been generally assumed.  相似文献   

20.
Abstract— The kinetics of photooxidation of triplets of metalloporphyrin compounds to their corresponding radical cations was investigated. Zn-tetraphenyl porphyrin (ZnTPP) and Mg-tetraphenylpor-phyrin (MgTPP) triplets were oxidized by europium salt with rate constants of 4.8 × 105M-1s-1 and 2.1 × 106M-1s-1, respectively. The high rate constant of oxidation of MgTPP triplet might be related to the ground state oxidation potential, being 0.54 V (SCE) for the Mg complex and 0.71 (SCE) for the Zn complex.
The rate constant of oxidation of ZnTPP excited singlet is in the order of diffusion control, i.e. ˜ 1010M -1 s-1. Excitation of ferric, cupric, cobaltic, and vanadyl tetraphenylporphyrin did not result in a long-lived triplet state that would allow oxidation studies using flash photolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号