首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain an effective compatibilizer for the blends of poly(L‐lactide) (PLLA) and poly(ε‐caprolactone) (PCL), the diblock copolymers PCL‐b‐PLLA with different ratios of PCL/PLLA (CL/LA) and different molecular weights (Mn) were synthesized by ring‐opening polymerization (ROP) of L‐lactide with monohydric poly(ε‐caprolactone) (PCL‐OH) as a macro‐initiator. These copolymers were melt blended with PLLA/PCL (80/20) blend at contents between 3.0 and 20 phr (parts per hundred resin), and the effects of added PCL‐b‐PLLA on the mechanical, morphological, rheological, and thermodynamic properties of the PLLA/PCL/PCL‐b‐PLLA blends were investigated. The compatibility between PLLA matrix and PCL phase was enhanced with decreasing in CL/LA ratios or increasing in Mn for the added PCL‐b‐PLLA. Moreover, the crystallinity of PLLA matrix increased because of the added compatibilizers. The PCL‐b‐PLLA with the ratio of CL/LA (50/50) and Mn ≥ 39.0 kg/mol were effective compatibilizers for PLLA/PCL blends. When the content of PCL‐b‐PLLA is greater than or equal to 5 phr, the elongations at break of the PLLA/PCL/PCL‐b‐PLLA blends all reached approximately 180%, about 25 times more than the pristine PLLA/PCL(80/20) blend.  相似文献   

2.
Epoxidized soybean oil (ESO) was blended as a novel plasticizer with polybutylene succinate (PBS) in a twin‐screw extruder. The effects of ESO on the mechanical and thermal properties of the PBS/ESO blends were investigated by means of tensile test, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscope. ESO improved elongation at break for PBS, which increased and then decreased with the increase in ESO. Elongation at break reached a maximum of 15 times than that for pure PBS when the ESO loading was 5 wt%. The tensile strength and modulus for the blends were lower than those for pure PBS. Compared with pure PBS, the blends exhibited lower glass transition temperature, crystallization temperature, and melting temperature. The storage modulus and tan δ peaks for the blends were lower compared with that for pure PBS. ESO had very limited compatibility with PBS, and phase separation was observed when more ESO was added. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Dynamic mechanical thermal analysis and calorimetric studies are reported on blends of poly(ethylene oxide) (PEO) with poly(N-vinyl pyrrolidone) (PVP) between 80% and 40% PEO. DMTA curves show a peak corresponding to a phase of pure PEO and another peak which can be attributed to blended material. The calorimetric analysis shows an appreciable melting point depression and a marked decrease in the crystallization rate as the PVP content increases. The melting point depression follows the Nishi-Wang equation, giving an interaction parameter of ?0.50. These studies suggest the existence of microphases in the blend.  相似文献   

4.
Ultradrawn ribbons of solution-cast blends of poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) have been prepared by a solid-state coextrusion in a capillary rheometer. An increase of noncrystallizable PMMA in the blends drastically decreased the drawability from a draw ratio of 36 for pure PEO to 5 for a mixture of PEO/PMMA 40/60% by weight. A low crystallinity and depression of melting temperature for PEO were observed with increasing draw. The Flory-Huggins theory for melting temperature depression has been used to derive the binary interaction parameter for these blends.  相似文献   

5.
Blend films of poly(L -lactic acid) (PLLA) and cellulose with various composition was prepared by casting from trifluoroacetic acid solution. One hydroxyl group per each glucose unit was esterified by trifluoroacetic acid. The trifluoroacetyl group was hydrolyzed completely during the degradation. Weight losses for 90/10 and 75/25 PLLA/cellulose blends by proteinaze K were greatly increased compared with pure PLLA sample due to the large depression of the crystallinity of PLLA component, while cellulase was effective only for the degradation of pure cellulose film. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1861–1864, 1998  相似文献   

6.
Poly(3‐hydroxybutyrate) (PHB)/poly(glycidyl methacrylate) (PGMA) blends were prepared by a solution‐precipitation procedure. The compatibility and thermal decomposition behavior of the PHB/PGMA blends was studied with differential scanning calorimetry, thermogravimetric analysis, and differential thermal analysis (DTA). The blends were immiscible in the as‐blended state, but for the blends with PGMA contents of 50 wt % or more, the compatibility was dramatically changed after 1 min of annealing at 200 °C. In addition, PHB/PGMA blends showed higher thermal stability, as measured by maximum decomposition temperatures and residual weight during thermal degradation. This was probably due to crosslinking reactions of the epoxide groups in the PGMA component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in the DTA thermograms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 351–358, 2002  相似文献   

7.
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good.  相似文献   

8.
Summary PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer and intensively investigated as cast and sheet films with applications in food industry or in medicine. The films obtained are typically brittle and many scientists have attempted to reduce this brittleness by blending with other polymers. PHB from Usina da Pedra was blended with PEG poly(ethyleneglycol) 300 resulting in blend 1 and blend 2. The two mixtures were melted at 200 and quenched at 0&deg;C. TG curves showed that the thermal stability of the blends and the PHB are identical. For these blends the crystallization temperature decreased compared to the pure PHB, which is probably due to the lower nucleation density.  相似文献   

9.
Polypropylene was blended with polybutadiene in an internal mixer in order to improve its toughness. The rubber content ranged from 10 to 20 wt. % and dicumyl peroxide (DCP) was added to provide required radicals for dynamic crosslinking of polybutadiene, and for in-situ compatibilization of the phases. This was done using two sequences of mixing. In addition, zinc dimethacrylate was utilized as a co-agent to control chain scission of PP, enhance the interfacial reactions and increase compatibility of the components. In obtaining the optimum blend, the Taguchi orthogonal experimental design was applied and results of Izod impact strength test were concordantly related to crystallinity of the polypropylene, morphology of the blends and reactions that may occur. The impact strength was increased about four times at best in comparison to the neat polypropylene, showing versatility of this way of toughening which may be improved further.  相似文献   

10.
Propylene-co-ethylene elastomer resin (PER) has been blended into biodegradable poly(butylene succinate) copolymer (PBS) by a melt-blending process to develop a novel semi-biodegradable thermoplastic elastomer. The PBS/PER blends displayed good compatibility in the range 70/30 > PBS/PER > 30/70 according to analyses by DSC, DMA and the Couchman method. Although the PBS/PER blends displayed compatibility, SEM analyses of most of the PBS/PER blends revealed two-phase structures including sea-island and irregular fiber-shaped morphologies, except for PBS/PER (70/30). PBS/PER (60/40) and PBS/PER (50/50) display low tensile strength due to large sea-phase and irregular fiber-shaped morphologies, even though they have good compatibility. PBS/PER (70/30) apparently exhibited a single phase by SEM and showed the best compatibility by DSC and DMA. Furthermore, the tan δ, elongation and initial moduli of the PBS/PER blends were seen to increase with increasing PER content, indicating that the toughness and shock resistance of PBS are improved by incorporating PER into the composition.  相似文献   

11.
A novel thermally degradable photocrosslinking system was investigated. Difunctional and trifunctional epoxides with tertiary ester linkages were synthesized. When blended films of epoxides and poly(vinyl phenol) or epoxides and poly(methacrylic acid‐co‐ethyl methacrylate) with a photoacid generator were irradiated and then baked at relatively low temperatures (<100 °C), the films became insoluble in solvents. The heating conditions strongly affected the insoluble fractions of the blends. The insoluble fractions of the blended films containing the trifunctional epoxide were higher than the fractions of the films containing the difunctional epoxide. The crosslinked films became soluble after baking at relatively high temperatures (>120 °C). The reaction pathway of the blended system was studied with in situ Fourier transform infrared measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3685–3696, 2004  相似文献   

12.
PTHF-b-PMMA/PVC共混体系的相容性和结晶行为   总被引:1,自引:0,他引:1  
研究了具有焓效应的聚四氢呋喃-聚甲基丙烯酸甲酯两嵌段共聚物与聚氯乙烯PTHF-b-PMMA/PVC)共混体系的相容性和结晶行为. 结果表明, 其相容性比AB/A型嵌段共聚物共混体系的相容性要好得多; 与PTHF部分相容的PVC对PTHF微区的结晶行为可产生很大的影响. 应用有关理论和模型很好地解释了结晶行为的这种变化.  相似文献   

13.
Blends of poly(ethylene oxide) (PEO) of high molecular weight with poly(bisphenol A-co-epichlorohydrin) (PBE) with high epoxy equivalent were studied spectroscopically, thermally and morphologically. As similar systems of low molecular weight, a single Tg was observed for all blends, indicating miscibility. A progressive decrease in the degree of crystallinity and in the size of the PEO spherulites as the PBE is added is also observed. Quantitative analysis from FTIR spectra provided determination of specific interactions between the constituents and their variation with PEO content. Simulations were performed utilising the spectra of the pure polymers to confirm that the observed changes in the experimental spectra of the blends were due to interaction between the polymers.  相似文献   

14.
多组份聚丙烯共混物的微观结构及共混纤维的染色性能   总被引:3,自引:0,他引:3  
研究了PP GPET、PP GPET EVA、PP GPET EVA PS共混物的结构和性能 .研究表明 ,PP GPET体系属于非相容共混体系 ,共混物呈典型海岛型两相结构 ,EVA的加入可以改善体系相容性 ;共混物的结晶度比纯聚丙烯低 ,PS有增大共混物晶粒尺寸的作用 ;改性聚丙烯纤维的染色性有明显提高 ,用分散染料E EX可染成深蓝色  相似文献   

15.
Nanofibrous scaffolds of silk fibroin (SF) and poly(l-lactic acid-co-?-caprolactone) (P(LLA-CL)) blends fabricated via electrospinning possessed good mechanical property and biocompatibility, as demonstrated by a previous study in vitro. However, the degradation behavior of the scaffolds, which may significantly influence tissue repair and regeneration, needs further exploration. In this study, in vitro degradation of pure SF, P(LLA-CL) and SF/P(LLA-CL) blended nanofibrous scaffolds were performed in phosphate-buffered saline (PBS, pH 7.4 ± 0.1) at 37 °C for 6 months. A series of analyses and characterizations (including morphologic changes, loss weight, pH changes of PBS solutions, DSC, XRD and FTIR-ATR) were conducted to the nanofibrous scaffolds after degradation and the results showed that the pure SF nanofibrous scaffolds were not completely degradable in PBS while pure P(LLA-CL) nanofibrous scaffolds had the fastest degradation rate. Moreover, the addition of SF reduced the degradation rate of P(LLA-CL) in SF/P(LLA-CL) blended nanofibrous scaffolds. This was probably caused by the intermolecular interactions between SF and P(LLA-CL), which hindered the movement of P(LLA-CL) molecular chains.  相似文献   

16.
Poly(vinyl chloride)-chlororubber-20 blends have been studied for compatibility by dielectric, ultrasonic and X-ray diffraction techniques. It has been found by both ultrasonic and dielectric techniques that poly(vinyl chloride) forms compatible blends with chlororubber-20 over a wide range of composition. X-ray diffraction studies indicate polymer-polymer interaction and reduction in the crystallinity of poly(vinyl chloride) by the incorporation of chlororubber-20. These results agree with earlier observations and have been explained in terms of the molecular and morphological behaviour of the blends.  相似文献   

17.
To assess the compatibility of blends of synthetic poly(propylene carbonate) (PPC), with a natural bacterial poly(3-hydroxybutyrate) (PHB), a simple casting procedure of blend was used. poly(3-hydroxybutyrate)/poly(propylene carbonate) blends are found to be incompatible according to DSC and DMA analysis. In order to improve the compatibility and mechanical properties of PHB/PPC blends, poly(vinyl acetate) (PVAc) was added as a compatibilizer. The effects of PVAc on the thermal behavior, morphology, and mechanical properties of 70PHB/30PPC blend were investigated. The results show that the melting point and the crystallization temperature of PHB in blends decrease with the increase of PVAc content in blends, the loss factor changes from two separate peaks of 70PHB/30PPC blend to one peak of 70PHB/30PPC/12PVAc blend. It is also found that adding PVAc into 70PHB/30PPC blend can decrease the size of dispersed phase from morphology analysis. The result of tensile properties shows that PVAc can increase the tensile strength and Young’s modulus of 70PHB/30PPC blend, and both the elongation at break and the tensile toughness increase significantly with PVAc added into 70PHB/30PPC.  相似文献   

18.
Blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) in the amorphous state were miscible in all of the blend compositions studied, as evidenced by a single, composition‐dependent glass‐transition temperature observed for each blend composition. The variation in the glass‐transition temperature with the blend composition was well predicted by the Gordon–Taylor equation, with the fitting parameter being 0.91. The cold‐crystallization (peak) temperature decreased with an increasing PTT content, whereas the melt‐crystallization (peak) temperature decreased with an increasing amount of the minor component. The subsequent melting behavior after both cold and melt crystallizations exhibited melting point depression behavior in which the observed melting temperatures decreased with an increasing amount of the minor component of the blends. During crystallization, the pure components crystallized simultaneously just to form their own crystals. The blend having 50 wt % of PTT showed the lowest apparent degree of crystallinity and the lowest tensile‐strength values. The steady shear viscosity values for the pure components and the blends decreased slightly with an increasing shear rate (within the shear rate range of 0.25–25 s?1); those of the blends were lower than those of the pure components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 676–686, 2004  相似文献   

19.
Microwave-assisted chemical modification of lignin was achieved through esterification using maleic anhydride. Modified lignin (ML) was blended in different proportions up to 25 mass% with polypropylene (PP) using Brabender electronic Plasticorder at 190 °C. The structural and thermal properties of blends were investigated by thermogravometric analysis (TG), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). TG analysis showed increased thermal stability of blends due to antioxidant property of ML, which opposed oxidative degradation of PP. DSC analysis indicted slight depression in a glass transition temperature and melting temperature of blends due to partial miscible blend behavior between PP and ML. All blends showed higher crystallization temperatures and continuously reducing percentage crystallinity with increasing ML proportion in the blends. WAXD analysis indicated that PP crystallized in β polymeric form in addition to α-form in the presence of ML. However, proportion of β-form did not show linear relation with increase in ML proportion, thus ML acts as β nucleating agent in the PP matrix. SEM analysis showed good dispersion/miscibility in PP matrix indicating modification in lignin is useful.  相似文献   

20.
Water absorption and other properties of polyamides can potentially be modified by blending with polyesters. The compatibility of a polyester ionomer melt‐blended with nylon‐6 is studied in this article, examining the effect of blending upon crystallization behaviors, morphology, thermal/mechanical properties, and water absorption. Comparisons of the crystallization behaviors of the ionomer/nylon‐6 blends with poly(ethylene terephthalate)/nylon‐6 blends suggest increased compatibility due to greater interactions between the two phases. The results indicate that the presence of a significant amount of the ionomeric groups is required to improve polyester compatibility with polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2091–2103, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号