首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We consider a polling model of two M/G/1 queues, served by a single server. The service policy for this polling model is of threshold type. Service at queue 1 is exhaustive. Service at queue 2 is exhaustive unless the size of queue 1 reaches some level T during a service at queue 2; in the latter case the server switches to queue 1 at the end of that service. Both zero- and nonzero switchover times are considered. We derive exact expressions for the joint queue length distribution at customer departure epochs, and for the steady-state queue-length and sojourn time distributions. In addition, we supply a simple and very accurate approximation for the mean queue lengths, which is suitable for optimization purposes.  相似文献   

2.
S. C. Borst 《Queueing Systems》1995,20(3-4):369-393
We consider polling systems with multiple coupled servers. We explore the class of systems that allow an exact analysis. For these systems we present distributional results for the waiting time, the marginal queue length, and the joint queue length at polling epochs. The class in question includes several single-queue systems with a varying number of servers, two-queue two-server systems with exhaustive service and exponential service times, as well as infinite-server systems with an arbitrary number of queues, exhaustive or gated service, and deterministic service times.  相似文献   

3.
We study a BMAP/>SM/1 queue with batch Markov arrival process input and semi‐Markov service. Service times may depend on arrival phase states, that is, there are many types of arrivals which have different service time distributions. The service process is a heterogeneous Markov renewal process, and so our model necessarily includes known models. At first, we consider the first passage time from level {κ+1} (the set of the states that the number of customers in the system is κ+1) to level {κ} when a batch arrival occurs at time 0 and then a customer service included in that batch simultaneously starts. The service descipline is considered as a LIFO (Last‐In First‐Out) with preemption. This discipline has the fundamental role for the analysis of the first passage time. Using this first passage time distribution, the busy period length distribution can be obtained. The busy period remains unaltered in any service disciplines if they are work‐conserving. Next, we analyze the stationary workload distribution (the stationary virtual waiting time distribution). The workload as well as the busy period remain unaltered in any service disciplines if they are work‐conserving. Based on this fact, we derive the Laplace–Stieltjes transform for the stationary distribution of the actual waiting time under a FIFO discipline. In addition, we refer to the Laplace–Stieltjes transforms for the distributions of the actual waiting times of the individual types of customers. Using the relationship between the stationary waiting time distribution and the stationary distribution of the number of customers in the system at departure epochs, we derive the generating function for the stationary joint distribution of the numbers of different types of customers at departures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper we consider a single-server, cyclic polling system with switch-over times and Poisson arrivals. The service disciplines that are discussed, are exhaustive and gated service. The novel contribution of the present paper is that we consider the reneging of customers at polling instants. In more detail, whenever the server starts or ends a visit to a queue, some of the customers waiting in each queue leave the system before having received service. The probability that a certain customer leaves the queue, depends on the queue in which the customer is waiting, and on the location of the server. We show that this system can be analysed by introducing customer subtypes, depending on their arrival periods, and keeping track of the moment when they abandon the system. In order to determine waiting time distributions, we regard the system as a polling model with varying arrival rates, and apply a generalised version of the distributional form of Little??s law. The marginal queue length distribution can be found by conditioning on the state of the system (position of the server, and whether it is serving or switching).  相似文献   

5.
In this paper we consider a single-server polling system with switch-over times. We introduce a new service discipline, mixed gated/exhaustive service, that can be used for queues with two types of customers: high and low priority customers. At the beginning of a visit of the server to such a queue, a gate is set behind all customers. High priority customers receive priority in the sense that they are always served before any low priority customers. But high priority customers have a second advantage over low priority customers. Low priority customers are served according to the gated service discipline, i.e. only customers standing in front of the gate are served during this visit. In contrast, high priority customers arriving during the visit period of the queue are allowed to pass the gate and all low priority customers before the gate. We study the cycle time distribution, the waiting time distributions for each customer type, the joint queue length distribution of all priority classes at all queues at polling epochs, and the steady-state marginal queue length distributions for each customer type. Through numerical examples we illustrate that the mixed gated/exhaustive service discipline can significantly decrease waiting times of high priority jobs. In many cases there is a minimal negative impact on the waiting times of low priority customers but, remarkably, it turns out that in polling systems with larger switch-over times there can be even a positive impact on the waiting times of low priority customers.  相似文献   

6.
Eliazar  Iddo  Fibich  Gadi  Yechiali  Uri 《Queueing Systems》2002,42(4):325-353
Two random traffic streams are competing for the service time of a single server (multiplexer). The streams form two queues, primary (queue 1) and secondary (queue 0). The primary queue is served exhaustively, after which the server switches over to queue 0. The duration of time the server resides in the secondary queue is determined by the dynamic evolution in queue 1. If there is an arrival to queue 1 while the server is still working in queue 0, the latter is immediately gated, and the server completes service there only to the gated jobs, upon which it switches back to the primary queue. We formulate this system as a two-queue polling model with a single alternating server and with randomly-timed gated (RTG) service discipline in queue 0, where the timer there depends on the arrival stream to the primary queue. We derive Laplace–Stieltjes transforms and generating functions for various key variables and calculate numerous performance measures such as mean queue sizes at polling instants and at an arbitrary moment, mean busy period duration and mean cycle time length, expected number of messages transmitted during a busy period and mean waiting times. Finally, we present graphs of numerical results comparing the mean waiting times in the two queues as functions of the relative loads, showing the effect of the RTG regime.  相似文献   

7.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

8.
We consider a polling model in which a number of queues are served, in cyclic order, by a single server. Each queue has its own distinct Poisson arrival stream, service time, and switchover time (the server's travel time from that queue to the next) distribution. A setup time is incurred if the polled queue has one or more customers present. This is the polling model with State-Dependent service (the SD model). The SD model is inherently complex; hence, it has often been approximated by the much simpler model with State-Independent service (the SI model) in which the server always sets up for a service at the polled queue, regardless of whether it has customers or not. We provide an exact analysis of the SD model and obtain the probability generating function of the joint queue length distribution at a polling epoch, from which the moments of the waiting times at the various queues are obtained. A number of numerical examples are presented, to reveal conditions under which the SD model could perform worse than the corresponding SI model or, alternately, conditions under which the SD model performs better than a corresponding model in which all setup times are zero. We also present expressions for a variant of the SD model, namely, the SD model with a patient server.  相似文献   

9.
M/G/1 queues with server vacations have been studied extensively over the last two decades. Recent surveys by Boxma [3], Doshi [5] and Teghem [14] provide extensive summary of literature on this subject. More recently, Shanthikumar [11] has generalized some of the results toM/G/1 type queues in which the arrival pattern during the vacations may be different from that during the time the server is actually working. In particular, the queue length at the departure epoch is shown to decompose into two independent random variables, one of which is the queue length at the departure epoch (arrival epoch, steady state) in the correspondingM/G/1 queue without vacations. Such generalizations are important in the analysis of situations involving reneging, balking and finite buffer cyclic server queues. In this paper we consider models similar to the one in Shanthikumar [11] but use the work in the system as the starting point of our investigation. We analyze the busy and idle periods separately and get conditional distributions of work in the system, queue length and, in some cases, waiting time. We then remove the conditioning to get the steady state distributions. Besides deriving the new steady state results and conditional waiting time and queue length distributions, we demonstrate that the results of Boxma and Groenendijk [2] follow as special cases. We also provide an alternative approach to deriving Shanthikumar's [11] results for queue length at departure epochs.  相似文献   

10.
We consider a class of two-queue polling systems with exhaustive service, where the order in which the server visits the queues is governed by a discrete-time Markov chain. For this model, we derive an expression for the probability generating function of the joint queue length distribution at polling epochs. Based on these results, we obtain explicit expressions for the Laplace–Stieltjes transforms of the waiting-time distributions and the probability generating function of the joint queue length distribution at an arbitrary point in time. We also study the heavy-traffic behaviour of properly scaled versions of these distributions, which results in compact and closed-form expressions for the distribution functions themselves. The heavy-traffic behaviour turns out to be similar to that of cyclic polling models, provides insights into the main effects of the model parameters when the system is heavily loaded, and can be used to derive closed-form approximations for the waiting-time distribution or the queue length distribution.  相似文献   

11.
In this paper, an M/G/1 queue with exponentially working vacations is analyzed. This queueing system is modeled as a two-dimensional embedded Markov chain which has an M/G/1-type transition probability matrix. Using the matrix analytic method, we obtain the distribution for the stationary queue length at departure epochs. Then, based on the classical vacation decomposition in the M/G/1 queue, we derive a conditional stochastic decomposition result. The joint distribution for the stationary queue length and service status at the arbitrary epoch is also obtained by analyzing the semi-Markov process. Furthermore, we provide the stationary waiting time and busy period analysis. Finally, several special cases and numerical examples are presented.  相似文献   

12.
13.
In this paper, a multiple server queue, in which each server takes a vacation after serving one customer is studied. The arrival process is Poisson, service times are exponentially distributed and the duration of a vacation follows a phase distribution of order 2. Servers returning from vacation immediately take another vacation if no customers are waiting. A matrix geometric method is used to find the steady state joint probability of number of customers in the system and busy servers, and the mean and the second moment of number of customers and mean waiting time for this model. This queuing model can be used for the analysis of different kinds of communication networks, such as multi-slotted networks, multiple token rings, multiple server polling systems and mobile communication systems.  相似文献   

14.
Takine  Tetsuya 《Queueing Systems》2001,37(1-3):31-63
This paper considers stationary queues with multiple arrival streams governed by an irreducible Markov chain. In a very general setting, we first show an invariance relationship between the time-average joint queue length distribution and the customer-average joint queue length distribution at departures. Based on this invariance relationship, we provide a distributional form of Little's law for FIFO queues with simple arrivals (i.e., the superposed arrival process has the orderliness property). Note that this law relates the time-average joint queue length distribution with the stationary sojourn time distributions of customers from respective arrival streams. As an application of the law, we consider two variants of FIFO queues with vacations, where the service time distribution of customers from each arrival stream is assumed to be general and service time distributions of customers may be different for different arrival streams. For each queue, the stationary waiting time distribution of customers from each arrival stream is first examined, and then applying the Little's law, we obtain an equation which the probability generating function of the joint queue length distribution satisfies. Further, based on this equation, we provide a way to construct a numerically feasible recursion to compute the joint queue length distribution.  相似文献   

15.
本对批到达离散时间轮询系统进行研究,在门限服务原则下,推出了原客等待时间和轮询周期的概率母函数,利用Markov链理论,得出了队列队长均值。  相似文献   

16.
A general model for the single server semi-Markov queue is studied. Its solution is reduced to a matrix factorization problem. Given this factorization, results are obtained for the distributions of actual and virtual waiting times, queue lengths both at arrival epochs and in continuous time, the number of customers during a busy period, its length and the length of a busy cycle. Two examples are discussed for which explicit factorizations have been obtained.  相似文献   

17.
Consider a GI/M/1 queue with phase-type working vacations and vacation interruption where the vacation time follows a phase-type distribution. The server takes the original work at the lower rate during the vacation period. And, the server can come back to the normal working level at a service completion instant if there are customers at this instant, and not accomplish a complete vacation. From the PH renewal process theory, we obtain the transition probability matrix. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at arrival epochs, and waiting time of an arbitrary customer. Meanwhile, we obtain the stochastic decomposition structures of the queue length and waiting time. Two numerical examples are presented lastly.  相似文献   

18.
The GI/M/1 queue with exponential vacations   总被引:5,自引:0,他引:5  
In this paper, we give a detailed analysis of the GI/M/1 queue with exhaustive service and multiple exponential vacation. We express the transition matrix of the imbedded Markov chain as a block-Jacobi form and give a matrix-geometric solution. The probability distribution of the queue length at arrival epochs is derived and is shown to decompose into the distribution of the sum of two independent random variables. In addition, we discuss the limiting behavior of the continuous time queue length processes and obtain the probability distributions for the waiting time and the busy period.  相似文献   

19.
Polling systems and multitype branching processes   总被引:8,自引:3,他引:5  
The joint queue length process in polling systems with and without switchover times is studied. If the service discipline in each queue satisfies a certain property it is shown that the joint queue length process at polling instants of a fixed queue is a multitype branching process (MTBP) with immigration. In the case of polling models with switchover times, it turns out that we are dealing with an MTBP with immigration in each state, whereas in the case of polling models without switchover times we are dealing with an MTBP with immigration in state zero. The theory of MTBPs leads to expressions for the generating function of the joint queue length process at polling instants. Sufficient conditions for ergodicity and moment calculations are also given.This work was done while the author was at the Centre for Mathematics and Computer Science (CWI) in Amsterdam, The Netherlands.  相似文献   

20.
Consider a polling system withK1 queues and a single server that visits the queues in a cyclic order. The polling discipline in each queue is of general gated-type or exhaustive-type. We assume that in each queue the arrival times form a Poisson process, and that the service times, the walking times, as well as the set-up times form sequences of independent and identically distributed random variables. For such a system, we provide a sufficient condition under which the vector of queue lengths is stable. We treat several criteria for stability: the ergodicity of the process, the geometric ergodicity, and the geometric rate of convergence of the first moment. The ergodicity implies the weak convergence of station times, intervisit times and cycle times. Next, we show that the queue lengths, station times, intervisit times and cycle times are stochastically increasing in arrival rates, in service times, in walking times and in setup times. The stability conditions and the stochastic monotonicity results are extended to the polling systems with additional customer routing between the queues, as well as bulk and correlated arrivals. Finally, we prove that the mean cycle time, the mean intervisit time and the mean station times are invariant under general service disciplines and general stationary arrival and service processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号