首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By neutron diffraction it was shown that nanostructured Se confined within a porous glass matrix exists in a crystalline as well as in an amorphous state. The spontaneous crystallization of crystalline Se from confined amorphous phase was observed. The root-mean-square amplitudes of the atomic motions in the bulk as well as in confinement are found to be essentially different in a basal plane and in the perpendicular direction along the hexagonal axis. The atomic motions in the confined Se differ from the atomic motions in the bulk at low temperatures. The results shows an unusual “freezing" of the atomic motion along the chains, while the atomic motions in the perpendicular plane still keep. This “freezing" is accompanied by the deformation of nanoparticles and the appearance of inner stresses. This effect is attributed to the interaction of confined nanoparticle with the cavity walls.  相似文献   

2.
This paper studies parametric resonance of coupled micromechanical oscillators under periodically varying nonlinear coupling forces. Different from most of previous related works in which the periodically varying coupling forces between adjacent oscillators are linearized, our work focuses on new physical phenomena caused by the periodically varying nonlinear coupling. Harmonic balance method (HBM) combined with Newton iteration method is employed to find steady-state periodic solutions. Similar to linearly coupled oscillators studied previously, the present model predicts superharmonic parametric resonance and the lower-order subharmonic parametric resonance. On the other hand, the present analysis shows that periodically varying nonlinear coupling considered in the present model does lead to the appearance of high-order subharmonic parametric resonance when the external excitation frequency is a multiple or nearly a multiple (≥3) of one of the natural frequencies of the oscillator system. This remarkable new phenomenon does not appear in the linearly coupled micromechanical oscillators studied previously, and makes the range of exciting resonance frequencies expanded to infinity. In addition, the effect of a linear damping on parametric resonance is studied in detail, and the conditions for the occurrence of the high-order subharmonics with a linear damping are discussed.  相似文献   

3.
We report on the influence of oxygen on the morphology and crystal structure of gas-phase prepared FePt nanoparticles. The particles are prepared by DC-sputtering in an Ar/He gas mixture. Without any oxygen, the obtained particles are predominantly icosahedra. The additional supply of oxygen leads to significant changes in both the crystal structure and morphology of the FePt nanoparticles. With increasing oxygen concentration, we observe the onset of particle agglomeration and a drop of the particle size. In addition, the crystal structure changes from icosahedral to fcc. These results are ascribed to oxygen mediated changes of the surface properties of the FePt nanoparticles such as the surface diffusivity and the surface free energy.  相似文献   

4.
In this work we show that the polaron effects in cylindrical quantum wires are function of the cylinder radius R0 through the boundary conditions for both the ionic and the electronic motion and through the size dependence of the static and high frequency dielectric constants. We find that the dielectric constants are increasing functions of R0. This fact and the different boundary conditions for the ions and the electrons have the final consequence that polaron self-energy can either be an increasing or a decreasing function of R0.  相似文献   

5.
We consider non-equilibrium transport in disordered conductors. We calculate the interaction correction to the current for a short wire connected to electron reservoirs by resistive interfaces. In the absence of charging effects we find a universal current-voltage-characteristics. The relevance of our calculation for existing experiments is discussed as well as the connection with alternative theoretical approaches. Received 2 September 2002 Published online 29 October 2002  相似文献   

6.
The reversible transitions of the lamellae of a crystalline-crystalline diblock copolymer from the melt to crystallites were studied using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements with synchrotron radiation. A symmetric poly(ethylene oxide)-poly( -caprolactone) diblock copolymer was chosen for this study. We showed in the course of the block copolymer crystallisation that the time-resolved integrated intensity I int was proportional to the product of the volume fractions of the PEO and PCL phases and the scattering contrast due to the electron density difference. These results demonstrated that simultaneous SAXS/WAXS measurements could be used to monitor the crystallisation process in two domains of different sizes at the same time.  相似文献   

7.
Thermal conductivity of silicon and porous silicon nanowires based on the equation of phonon radiative transport is theoretically evaluated. The thermal conductivities of silicon nanowires with square cross-sections are found to match molecular dynamics simulation results reasonably well. It is shown that the results of meso-porous silicon nanowires are about two orders of magnitude lower than that of silicon nanowires in a wide range of temperature (50 K-300 K). Received 24 April 2001 and Received in final form 23 December 2001  相似文献   

8.
We study the acoustic-phonon transmission spectra in periodic and quasiperiodic (Fibonacci type) superlattices made up from the III-V nitride materials AlN and GaN. The phonon dynamics is described by a coupled elastic and electromagnetic equations within the static field approximation model, stressing the importance of the piezoelectric polarization field in a strained condition. We use a transfer-matrix treatment to simplify the algebra, which would be otherwise quite complicated, allowing a neat analytical expressions for the phonon transmission coefficients. Numerical results, for the normal incidence case, show a strike self-similar pattern for both hexagonal (class 6 mm) and cubic symmetries crystalizations of the nitrides.  相似文献   

9.
We study the acoustic-phonon spectra in periodic and quasiperiodic (Fibonacci type) superlattices made up from III–V nitride materials (GaN) intercalated by sapphire (Al2O3). Due to the misalignments between the sapphire and the GaN layers that can lead to threading dislocation densities as high as 108-1010 cm-1, and a significant lattice mismatch (~14%), the phonon dynamics is described beyond the continuum elastic model using coupled elastic and electromagnetic equations, stressing the importance of the piezoelectric polarization field in a strained condition. We use a transfer-matrix treatment to simplify the algebra, which would be otherwise quite complicated, allowing a neat analytical expressions for the phonon dispersion relation. Furthermore, a quantitative analysis of the localization and magnitude of the allowed band widths in the phonon's spectra, as well as their scale law and the parametric spectrum of singularities f(α), are presented and discussed.  相似文献   

10.
A strategy to overcome some specific problems associated to the computation of free energies in clusters is presented. Free energies and entropies of solid KCl nanoclusters are determined by thermodynamic integration, and Watanabe and Reinhardt’s dynamical method, based on molecular dynamics simulations. The values are in good agreement with experimental data. From a previous theoretical prediction of the caloric curve, T(E), for the coexistence region, an equation is derived to compute the free energies of the clusters at the solid-liquid coexistence. The results are discussed in the context of the thermodynamic stability of phase coexistent states for finite and infinite systems, yielding consistent conclusions.  相似文献   

11.
The dynamics of excited phonon spectra of the E⊗e Jahn-Teller (hereafter, JT) model mapped onto the generalized Calogero-Moser (gCM) gas of pseudoparticles implies a complex interplay between nonlinearity and fluctuations of quasiparticle trajectories. A broad crossover appears in a pseudotime (interaction strength) between the initial oscillator region and the nonlinear region of the kink-train lattice as a superlattice of the kink-antikink gCM trajectories. The local nonlinear fluctuations, nuclei (droplets) of the growing kink phase arise at the crossover, forming a new intermediate droplet “glassy” phase as a precursor of the kink phase. The “glassy” phase is related to a broad maximum in the entropy of the probability distributions of pseudoparticle accelerations, or level curvatures. The kink-train lattice phase with multiple kink-antikink collisions is stabilised by long-range correlations when approaching a semiclassical limit. A series of bifurcations of nearest-level spacings were recognised as signatures of pre-chaotic behaviour at the quantum level in the kink phase. Statistical characteristics can be seen to confirm the coexistence within all of the spectra of both regularity and chaoticity to a varying extent (nonuniversality). Regions are observed within which one of the phases is dominant.  相似文献   

12.
We consider a two-terminal Aharonov-Bohm (AB) interferometer with a quantum dot inserted in one path of the AB ring. We investigate the transport properties of this system in and out of the Kondo regime. We utilize perturbation theory to calculate the electron self-energy of the quantum dot with respect to the intradot Coulomb interaction. We show the expression of the Kondo temperature as a function of the AB phase together with its dependence on other characteristics such as the linewidth of the ring and the finite Coulomb interaction and the energy levels of the quantum dot. The current oscillates periodically as a function of the AB phase. The amplitude of the current oscillation decreases with increasing Coulomb interaction. For a given temperature, the electron transport through the AB interferometer can be selected to be in or out of the Kondo regime by changing the magnetic flux threading perpendicular to the AB ring of the system.  相似文献   

13.
We investigate the magnetoresistance (MR) responses in a ferromagnetic rectangular ring structure using a four-point probe technique. The measured MR curves are strongly dependent on the electrical contact geometries used. The associated MR characteristics are elucidated by a combination of micromagnetic simulations and resistor-network based model, and the MR contributions from different portions of the ring were studied quantitatively. The systematic angular MR measured at the ring corner further show that the locations of the domain wall nucleation are very sensitive to the field alignment.  相似文献   

14.
We study quantum transport in honeycomb lattice ribbons with either armchair or zigzag edges. The ribbons are coupled to semi-infinite linear chains serving as the input and output leads and we use a tight-binding Hamiltonian with nearest-neighbor hops. The input and output leads are coupled to the ribbons through bar contacts. In narrow ribbons we find transmission gaps for both types of edges. The appearance of this gap is due to the enhanced quantum interference coming from the multiple channels in bar contacts. The center of the gap is at the middle of the band in ribbons with armchair edges. This particle-hole symmetry is because bar contacts do not mix the two sublattices of the underlying bipartite honeycomb lattice when the ribbon has armchair edges. In ribbons with zigzag edges the gap center is displaced to the right of the band center. This breakdown of particle-hole symmetry is the result of bar contacts now mixing the two sublattices. We also find transmission oscillations and resonances within the transmitting region of the band for both types of edges. Extending the length of a ribbon does not affect the width of the transmission gap, as long as the ribbon’s length is longer than a critical value when the gap can form. Increasing the width of the ribbon, however, changes the width of the gap. In ribbons with zigzag edges the gap width systematically shrinks as the width of the ribbon is increased. In ribbons with armchair edges the gap is not well-defined because of the appearance of transmission resonances. We also find only evanescent waves within the gap and both evanescent and propagating waves in the transmitting regions.  相似文献   

15.
The coverage of vicinal, stepped surfaces with molecules is simulated with the help of a two-dimensional Ising model including local distortions and an Ehrlich-Schwoebel barrier term at the steps. An effective two-spin model is capable to describe the main properties of this distorted Ising model. It is employed to analyze the behavior of the system close to the critical points. Within a well-defined regime of bonding strengths and Ehrlich-Schwoebel barriers we find a reduction of coverage (magnetization) at low temperatures due to the presence of the surface step. This results in a second, low-temperature transition besides the standard Ising order-disorder transition. The additional transition is characterized by a divergence of the susceptibility as a finite-size effect. Due to the surface step the mean-field specific heat diverges with a power law.  相似文献   

16.
The electronic spectra for double-wall zigzag and armchair nanotubes are found. The influence of nanotube curvatures on the electronic spectra is also calculated. Our finding that the outer shell is hole doped by the inner shell is in the difference between Fermi levels of individual shells which originate from the different hybridization of π orbital. The shift and rotation of the inner nanotube with respect to the outer nanotube are investigated. We found stable semimetal characteristics of the armchair DWNTs in regard of the shift and rotation of the inner nanotube. We predict the shift of kF towards the bigger wave vectors with decreasing of the radius of the armchair nanotube.  相似文献   

17.
In this study, we propose a recursive approach to study the transport properties of atomic wires. It is based upon a real-space block-recursion technique with Landauer's formula being used to express the conductance as a scattering problem. To illustrate the method, we have applied it on a model system described by a single band tight-binding Hamiltonian. Results of our calculation therefore may be compared with the reported results on Na-atom wire. Upon tuning the tight-binding parameters, we can distinctly identify the controlling parameters responsible to decide the width as well as the phase of odd-even oscillations in the conductance.  相似文献   

18.
Using a phenomenological Landau theory, the size dependence on ferroelectric transition for free-standing long cylindrical nanoparticles is discussed. We derive the size dependence of the transition temperature, polarization profile as well as the static susceptibility. The transition temperature vanishes below a critical size where the static susceptibility shows divergence obeying Curie-Weiss law. In order to make this result compared with experiments, the average polarization and the susceptibility is computed with a Gaussian particle size distribution. The average polarization in such a case shows smearing with respect to the particle size whereas the divergence in the susceptibilty gets rounded. This might correspond to a size dependent soft mode which can be observed in Raman measurement.  相似文献   

19.
The magnetization distribution, its energetic characterization by the interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt multilayers are investigated using density functional theory combined with the direct method to determine phonon frequencies. It is found that ferromagnetic order between consecutive Fe layers is favoured, with the enhanced magnetic moments at the interface. The bilinear and biquadratic coupling coefficients between Fe layers are shown to saturate fast with increasing thickness of nonmagnetic Pt layers which separate them. The phonon calculations demonstrate a rather strong dependence of partial iron phonon densities of states on the actual position of Fe monolayer in the multilayer structure.  相似文献   

20.
The frequency of the Raman active A1g radial breathing mode has been widely used as a tool to estimate the distribution of diameters of single wall carbon nanotubes (SWNT). However, the relation between frequency and diameter is not straightforward and results are model-dependent. Because most of the experiments are performed on bundles and not on isolated tubes, the model should especially take into account the van der Waals intertube interactions. Here, we use a pair-potential approach to account for such interactions and we derive a nonlinear relation between the SWNT diameter and the frequency of the A1g radial breathing modes. We demonstrate a good agreement between calculations and the diameters derived from diffraction experiments on the same samples. Received 22 December 1999 and Received in final form 17 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号