首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
压电智能环形板的主动控制   总被引:1,自引:0,他引:1  
姚林泉  俞焕然 《力学学报》1999,31(3):366-371
对在不同位置粘有任意多组压电传感器和压电执行器的轴对称弹性环形薄板的振动控制进行了研究.根据压电执行元件的等效作用量得到了压电智能环板的振动控制方程和传感方程,再利用分离变量法以及由传感器测得的电量和作用在执行器上电压之间的控制模式得到振动方程的全解.实行了对整体结构的主动控制.对不同的压电片布置进行了数值计算.结果表明:当离散分布压电元件布置越密,振动衰减的效果越佳  相似文献   

2.
用三维有限元模型计算复合材料粘接修补裂纹板的J积分   总被引:1,自引:0,他引:1  
用复合材料单边粘接修补带裂纹金属板是三维应力问题,而采用简化的二维有限元分析模型计算则有一定近似性。本文建立了三维有限元模型,并计算了其断裂参数J积分。计算分析结果表明,厚度方向上J积分值是变化的,并且修补边比未修补边的J积分值有明显减小;修补前后裂纹面的张开位移明显不同;裂纹板模型的J积分值与裂纹长度在修补前为二次关系,修补后,变成线性关系;粘胶和补片的厚度、粘胶的模量对J积分的影响比较显著。为了提高修补性能,需要对粘胶和补片的几何尺寸和材料性能进行优化。  相似文献   

3.
赵翔  李思谊  李映辉 《力学学报》2021,53(11):3035-3044
建立了含裂纹损伤的曲梁压电能量俘获系统在强迫振动下的动力学模型. 基于Prescott型压电曲梁力电耦合振动方程的解析解和裂纹截面处的连续性条件, 求解了含裂纹损伤的压电曲梁的格林函数. 根据线性叠加原理, 对含裂纹的力电耦合模型的系统方程解耦, 得到强迫振动下含裂纹损伤的曲梁压电俘能器的输出电压. 在得到模型的强迫振动解析解后, 提出逆方法检测结构中的裂纹损伤, 这一检测方法适用于处于振动状态下的结构. 在数值计算中, 令裂纹深度为零, 通过对比本文的解析解与现有文献中的解析解, 验证了本文解的有效性. 分别分析了含裂纹损伤的压电曲梁的电压响应与裂纹深度、裂纹位置、材料的几何参数以及阻尼之间的关系. 研究结果表明: 裂纹的存在对曲梁式压电俘能器的影响比直梁式更加复杂; 裂纹出现时, 损伤曲梁在健康曲梁的一阶频率值处一定会出现波动并被激励出二阶频率, 此时的二阶频率是开路中健康压电曲梁的一阶频率值; 通过对电压响应的检测可以确定的损伤裂纹的深度和在结构中出现的位置范围; 利用振动问题的解来检测压电曲梁的健康状况是可行且准确的.   相似文献   

4.
A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.  相似文献   

5.
Anti-plane analysis of semi-infinite crack in piezoelectric strip   总被引:1,自引:0,他引:1  
Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.  相似文献   

6.
用压电材料进行损伤鉴别的理论与数值分析   总被引:1,自引:0,他引:1  
对压电材料用于损伤监测的理论和数值分析做了一些研究。首先,设计了一种用压电材料进行损伤监测的模型。然后,对这个模型进行分析,找出简单有效的解答办法,将求解过程分解为断裂力学分析和压电分析两部分,并通过适当的假设,进行了详细的理论推导。通过正电有限元程序进行仿真计算,将数值计算结果与理论解进行比较以验证提出理论的正确性,并分析得到了裂纹参数与压电层表面电势变化之间的关系和普通弹性材料泊松比对波峰参数的影响。最后,用提出的方法验算了两个例题。从结果来看,理论结果和数值结果非常接近。  相似文献   

7.
Fatigue crack behavior of cracked aluminum panel repaired with the imperfectly bonded composite patch is analyzed. The imperfection is in the form of debond which could result during the bonding of patch or the service life of the repaired structure. Debonds, of various sizes and at different locations with respect to the crack front, are investigated. An analytical procedure, involving two-dimensional finite element method having three layers to model cracked plate, adhesive and composite patch, is used to compute the stress intensity factors of test coupons. From the computed stress intensity factors, the crack growth rates are obtained analytically by assuming that the relationship between the stress intensity factor and the crack growth rate after repair is the same as the fatigue crack growth relationship for cracked panel material. The fatigue crack growth rates obtained experimentally and analytically are in good agreement with each other and they vary linearly with crack length inside the patch. The experimental results are bounded between its analytical counterparts at the mid-plane and free edge surfaces of the cracked panel. The present analytical procedure can, thus, be used to characterize the effects of imperfectly and perfectly bonded composite patch repairs on the durability and damage tolerance of the repaired structure.  相似文献   

8.
The interaction between piezoelectric screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under combined mechanical and electric load at infinity is dealt with. The closed-form solutions are derived for complex potentials and generalized stress fields. In the limiting cases, some well-known results can be obtained from the present solutions. Moreover, some new exact solutions are shown. The stress intensity factor and the energy release rate at the right tip due to a screw dislocation near the right interfacial crack are also calculated. The results show that the shielding effect of dislocation on crack expanding decreases with the increase in dislocation azimuth angle and the distance between the dislocation and the crack tip, and the repulsion acting on the dislocation from the other half plane demotes crack propagation. The increasing of the length of the other crack promotes crack growth, but the increasing of the minor semi-axis demotes it.  相似文献   

9.
This paper aims to report the results of an experimental study on the application of piezoelectric dynamic strain sensors for crack length measurement in fracture mechanics specimens. The performance of the piezoelectric sensors was assessed through fatigue crack propagation tests in compact tension (CT) specimens. Sensors of polarized polyvinilidene fluoride polymer (PVDF) were bonded to the back face of CT specimens, in the same manner as the electrical resistance strain gages installed for crack length measurement in the back face strain technique. The results showed that, mainly due to its high sensitivity to strain, the use of piezoelectric materials as dynamic strain sensors can contribute to the experimental investigation in the field of fracture mechanics.  相似文献   

10.
When piezoelectric ceramics are subjected to mechanical and electrical load, they can fracture prematurely due to their brittle behavior. Hence, it is important to know the electro–elastic interaction and fracture behavior of piezoelectric materials. The problem of a through crack in a piezoelectric strip of finite thickness is studied in this paper. Fourier transforms are used to reduce the problem to the solution of singular integral equations. The model technique can solve for polarization in an arbitrary direction and material anisotropy. Numerical values of the crack-tip field amplification for a piezoelectric strip under in-plane electromechanical loading are obtained. Energy density factor criterion is applied to obtain the maximum of the minimum energy density and direction of crack initiation. The influence of crack length and crack position on stress intensity and energy density factors is discussed.  相似文献   

11.
In ductile fracture, voids near a crack tip play an important role. From this point of view, a large deformation finite element analysis has been made to study the deformation, stress and strain, and void ratio near the crack tip under mixed mode plane strain loading conditions, employing Gurson's constitutive equation which has taken into account the effects of void nucleation and growth. The results show that: (i) one corner of the crack tip sharpens while the other corner blunts, (ii) the stress and strain distributions except for the near crack tip region, can be superimposed by normalizing distance from the crack tip by a crack tip deformation length, i.e., a steady-state solution under a mixed mode condition has been obtained, (iii) the field near a crack tip can be divided into four characteristic fields (K field, HRR field, blunted crack tip field, and damaged region), and (iv) the strain and void volume fraction become concentrated in the sharpened part of a crack tip with increasing Mode II component.  相似文献   

12.
An unbalanced repair is a composite patch bonded to one side of a cracked structure for the purpose of preventing or reducing damage growth in the substrate. A single-sided repair offsets the load path within the structure, inducing out-of-plane bending. This bending increases the stress intensity in the underlying crack and causes adhesive peel stresses and bending of the repair which can, relative to a repair that is restrained against bending, lead to early failure. In this article the authors correct the analysis of Wang and Rose [Wang, C.H., Rose, L.R.F., 1997. On the design of bonded patches for one-sided repair. In: Proceedings of the 11th International Conference on Composite materials, Gold Coast, Australia, vol. 5, pp. 347–356] developed by using an energy analysis of a single-sided or unbalanced repair applied to a very long-crack, to comply with Maxwell’s reciprocal theorem and to account for transverse normal and shear stresses at the crack tip and the accompanying shear deflections. The authors then develop closed-form equations useful for bonded composite repair design and damage tolerance assessment of cracks of arbitrary length by developing a new method for interpolation between this long-crack limit and a short-crack limit based on the stress intensity and crack face displacements for an unreinforced crack. The interpolation method is then tested against an advanced line-spring model that has been created by using a 6th order generalized plane strain plate formulation in extension and a new 8th order formulation in bending, thus allowing for the inclusion of transverse shear and normal stresses. The closed-form equations are found to be accurate when compared to the line-spring model, and to provide reasonable results when compared to a three-dimensional finite element model of a bonded repair. Inaccuracies are shown to exist principally in the determination of the nominal stresses in the vicinity of the crack.  相似文献   

13.
Using the complex variable function method and the conformal mapping technique,the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface.Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable.The results can be reduced to the well-known solutio...  相似文献   

14.
A modified polarization saturation model is proposed and addressed mathematically using a complex variable approach in two-dimensional(2 D) semipermeable piezoelectric media. In this model, an existing polarization saturation(PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displacement(COD), the crack opening potential(COP), and the local stress intensity factors(SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.  相似文献   

15.
An inplane problem for a crack moving with constant subsonic speed along the interface of two piezoelectric materials is considered. A mechanically frictionless and electrically permeable contact zone is assumed at the right crack tip whilst for the open part of the crack both electrically permeable and electrically insulated conditions are considered. In the first case a moving concentrated loading is prescribed at the crack faces and in the second case an additional electrical charge at the crack faces is prescribed as well. The main attention is devoted to electrically permeable crack faces. Introducing a moving coordinate system at the leading crack tip the corresponding inhomogeneous combined Dirichlet–Riemann problem is formulated and solved exactly for this case. All electromechanical characteristics at the interface are presented in a closed form for arbitrary contact zone lengths, and further, the transcendental equation for the determination of the real contact zone length is derived. As a particular case of the obtained solution a semi-infinite crack with a contact zone is considered. The numerical analysis performed for a certain piezoelectric bimaterial showed an essential increase of the contact zone length and the associated stress intensity factor especially for the near-critical speed region. Similar investigations have been performed for an electrically insulated crack and the same behavior of the above mentioned parameters is observed.  相似文献   

16.
可控约束阻尼层板的杂交控制   总被引:5,自引:0,他引:5  
用局部压电层控制约束阻尼约束层产生一种新的主、被动杂交控制形式,称为可控制 约束层。本文根据弹性材料、粘弹性材料、压电材料的本构关系和变形连续条件,建立了可控约束阻尼层板的控制微方程;从理论上证明了用离散小压电片组合来代替整体压电层而不影响作动效果,改善了结构的工艺性;利用Galerkin方法和GHM方法建立了系统的近似低阶方程对一试验模型进行了控制数值模拟和试验实现,结果表明这种杂交控制对控制  相似文献   

17.
In this paper, the dynamic behavior of two parallel symmetric cracks in piezoelectric materials under harmonic anti-plane shear waves is investigated by use of the non-local theory for permeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations that the unknown variables are the jumps of the displacement along the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the frequency of the incident wave, the distance between two cracks and the lattice parameter of the materials, respectively. Contrary to the impermeable crack surface condition solution, it is found that the dynamic electric displacement for the permeable crack surface conditions is much smaller than the results for the impermeable crack surface conditions. The results show that the dynamic field will impede or enhance crack propagation in the piezoelectric materials at different stages of the dynamic load.  相似文献   

18.
基于分子动力学方法对含预制裂纹石墨烯进行扶手椅向拉伸断裂模拟。使用连续介质理论结合分子动力学计算石墨烯能量释放率,确定石墨烯能量释放率GIC为10.25 J/m2;应力强度因子KIC为 3.33MPam^1/2。进一步对影响石墨烯裂纹扩展速率的因素-初始裂纹长度与加载速率进行讨论。结果表明:裂纹初始长度与加载率会在一定程度上影响石墨烯中裂纹扩展速率。裂纹扩展速率会随着初始裂纹长度的增加而降低;但随着初始裂纹长度的增加,裂纹扩展速率对其敏感度降低。裂纹扩展速率会随着加载率的升高而增大。 初始裂纹长度与加载率对裂纹扩展速率的影响有一定的关联性,加载率的升高会降低裂纹扩展速率对初始裂纹长度变化的敏感度。在此基础上确定了石墨烯中裂纹扩展极限速率为8350 m/s。关联性,加载率的升高会降低裂纹扩展速率对初始裂纹长度变化的敏感度。在此基础上确定了石墨烯中裂纹扩展极限速率为8350 m/s。  相似文献   

19.
This paper describes the use of two multiplexed in-line fiber etalon (ILFE) sensors for air frame repair patch monitoring. The ILFE sensors are multiplexed using a combination of coherence division and frequency division multiplexing. Cantilever beam tests are used to verify the ILFE strain sensor performance and to measure multiplexing cross talk. The multiplexed ILFE sensors are then used to monitor the load transfer in a boron/epoxy patch utilized to repair cracks that occur in aging aircraft. The experiments show a clear relationship between a normalized measure of the strain inside the repair patch and crack extension in an aluminum single-edge notch specimen.  相似文献   

20.
压电复合材料粘接界面断裂有限元模拟   总被引:1,自引:1,他引:0  
根据数字化FRMM(Fix-Ratio Mix-Mode)断裂试验,得到了压电复合材料试件的断裂韧性和位移及应变场。本文在试验的基础上,通过非线性有限元软件ABAQUS及用户子程序UMAT进行了模拟分析,采用基于损伤力学的粘聚区模型(CZM)对压电复合材料界面的起裂和脱胶扩展进行了分析,并与VCCT方法进行了比较。计算得到的荷载位移曲线更接近于试验结果,但在裂纹扩展路径上的吻合需要对粘聚区法则进一步修正。通过进一步对CZM参数进行分析,表明界面粘结强度和界面刚度对计算结果的影响很大。研究结果表明,粘聚区模型可以很好地表征压电复合材料弱粘接界面脱胶断裂问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号