首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从光电集成电路的角度出发,根据量子点半导体光放大器(QD-SOA)中载流子跃迁速率方程和光场传输方程,建立了QD-SOA等效电路模型,并通过电路仿真的方法对QD-SOA的增益谱、饱和增益特性等进行了仿真和分析;利用QD-SOA的交叉增益调制研究了速率分别为40Gbps、100Gbps和160Gbps时的波长转换特性,并分析了不同的偏置电流、功率的信号光和探测光对输出信号消光比和Q值的影响,其转换速率可达到100Gbps,消光比ER约为10dB,Q值约为2.2.该研究对提高基于QD-SOA的交叉增益调制波长转换的性能具有指导意义.  相似文献   

2.
In this paper, the effects of interband and intraband transitions on the gain and phase stabilities in quantum dot semiconductor optical amplifier (QD-SOA) are investigated both temporally and spectrally employing electrical and optical pumping schemes. For this purpose, the carrier rate equations in different energy states coupled to the traveling wave optical field equation have been numerically solved to derive the dynamical behavior of QD-SOA. Our results show that the gain and phase response can be stabled under optical pumping (OP) scheme because the role of the interband and intraband transitions on the dynamics of QD-SOA is reduced. This behavior leads to high-speed pattern effect-free cross-phase modulation (XPM) in QD-SOA. It is found that optically pumped QD-SOA can have high performance in phase based applications. Moreover, it is shown that under OP scheme although the QD-SOA has lower gain value and slower gain recovery time, the ultrafast cross-gain modulation (XGM) without pattern effect is possible and the phase is recovered within a shorter time compared to EP scheme. The behavior arises from the different capacity of the carrier reservoir for pumping schemes.  相似文献   

3.
The design and performance of two optical latches, the Set-Reset (SR) latch and D-Flip-Flop has been studied. These latches are the building blocks of large optical processors. The latches are built using two optical logic operations NAND and NOT. Both NAND and NOT operations are realized by using Mach-Zhender interferometer (MZI) utilizing semiconductor optical amplifier with quantum dot active region (QD-SOA). Nonlinear dynamics including carrier heating and spectral hole-burning in the QD-SOA are taken into account together with the rate equations in order to realize the all-optical logic operations. Results show that this scheme can realize the functions of Set-Reset latch and D-Flip-Flop at high speeds (∼250 Gb/s). The dependence of the output quality (Q factor) on QD-SOA parameters is also discussed.  相似文献   

4.
The performance of all-optical logic NOR gate based on quantum-dot- semiconductor optical amplifier (QD-SOA) is simulated. By solving the rate equations of QD-SOAs when incorporated in the arms of a Mach–Zehnder interferometer the performance of NOR gate is numerically investigated. The model takes into account the impact of the amplified spontaneous emission, the input pulse energy and the injection current density on the system’s quality factor. Results show that NOR gate using QD-SOA is capable of operating at speeds of 250 Gbit/s with proper quality-factor.  相似文献   

5.
The feasibility of implementing an ultrafast NOT gate by means of a two-input Mach–Zehnder interferometer (MZI) that employs quantum-dot semiconductor optical amplifiers (QD-SOAs) is theoretically explored and shown. For this purpose a numerical treatment is conducted by modeling the propagation of strong pulses through a QD-SOA and the resultant change of the QD-SOA gain dynamics. This procedure allows to evaluate the impact of the critical parameters on the MZI complementary output port and find which is the most appropriate way to be selected and combined. The analysis of the simulation results reveals that with the non-data driven QD-SOA constantly held in the linear gain regime, the other QD-SOA, which is perturbed by the data to be logically inverted, must be operated in a nonlinear regime. This is defined by the drop of the specific QD-SOA gain by approximately 5.5 dB from its unsaturated value, which is caused by a data peak power being 4 dB higher than its saturation input power. Moreover, in order for the design to be complete, both QD-SOAs must be of medium length, provide a maximum modal gain such that their net gain exceeds by two orders of magnitude that at transparency, be biased at moderate current density and exhibit an electron relaxation time from the excited state to the ground state as fast as possible. Provided that these conditions are satisfied then a more than adequate extinction ratio can be obtained, which ensures that Boolean NOT logic is executed at 160 Gb/s both with logical correctness and high quality using QD-SOAs in a structurally simple, power efficient and operationally flexible version of the MZI.  相似文献   

6.
We have developed a novel analytical model, which describes the dynamic characteristics of optical pulse amplification and saturation in three state quantum dot (QD) semiconductor optical amplifiers (SOAs). The model takes into account the effect of the ground state, the excited state and the 2-dimensional wetting layer. The model is simple, accurate and fast, which makes it suitable for device design and characterization. The derived model has been utilized to study large-signal cross-gain modulation and crosstalk in multi-channel QD-SOA. Analytical expressions for large signal cross-gain modulation and crosstalk in multichannel SOA are derived. The effect of the dot relaxation/escape lifetimes and energy separation between QD states on cross-gain modulation and crosstalk are also studied. Our calculations show that by reducing QD energy state separation, via engineering the dot size and composition, one can reduce the cross-gain modulation efficiency and reduce crosstalk in multi-channel QD-SOAs.  相似文献   

7.
为了扩展以简谐振子为基矢的常规壳模型(SM)计算到晕核,提出了自相似结构壳模型(SSM).通过对简谐振子动能项和势能项的重度规以及单粒子平均场模拟,可以得到SSM中的单粒子轨道有态相关的圆频率,在SSM中,晕核大的均方根半径、厚的中子皮以及Borromean晕核和的束缚态性质能够再现出来。  相似文献   

8.
Physical processes in semiconductor optical amplifiers (SOAs) are discussed for the purpose of controlling the velocity of light. For all-optical networking applications, control of velocity of light at bandwidths greater than 100 Gb/s is required. Using interband and ultra-fast intraband nonlinear processes, including spectral hole burning and carrier heating, present in SOAs enables the control of optical signals ranging from 1 GHz to larger than 1 THz. The rate equations for intraband effects are derived and utilized to control optical signals at THz bandwidth. Both optical and electrical control of phase shifts is obtained. An advance bandwidth product of 10 is achieved by utilizing intraband effects in QD-SOA.  相似文献   

9.
We consider polarization dynamics of solitons in the split-step system (SSM), built as a periodic concatenation of dispersive and nonlinear segments. The model is based on coupled equations for two polarizations, which include birefringence and PMD (polarization-mode dispersion) in the form of random misalignments of the principal polarization axes at junctions between fiber segments. By means of direct simulations, we identify a full stability region for solitons (RZ signals) in the system, and compare it with that in the regular SSM. Beyond the stability border, pulses suffer splitting (which is a characteristic feature of the SSM). Considering co-transmission of soliton pairs, we conclude that the minimum separation between the RZ signals necessary to prevent their interaction increases by ?25% in comparison with the regular (single-polarization) SSM.  相似文献   

10.
In Order to extend the conventional shell model(SM) calculation with harmonic oscillator bases to halo nuclei, a self-similar, structure shell model(SSM) is proposed. The SSM is achieved by a rescaling of both the Kinetic and potential energy term of the harmonic oscillator and a mean field imitation, so that the single particle orbit in SSM has state (orbit) -dependent frequency. The large r. m. s. radius and the thick neutron skin for halo nuclei as well as the bound state properties of Borromean nuclei such as 6He, 11Li and 14Be can be reproduced.  相似文献   

11.
In this paper, the static analysis of functionally graded (FG) circular plates resting on linear elastic foundation with various edge conditions is carried out by using a semi-analytical approach. The governing differential equations are derived based on the three dimensional theory of elasticity and assuming that the mechanical properties of the material vary exponentially along the thickness direction and Poisson's ratio remains constant. The solution is obtained by employing the state space method (SSM) to express exactly the plate behavior along the graded direction and the one dimensional differential quadrature method (DQM) to approximate the radial variations of the parameters. The effects of different parameters (e.g., material property gradient index, elastic foundation coefficients, the surfaces conditions (hard or soft surface of the plate on foundation), plate geometric parameters and edges condition) on the deformation and stress distributions of the FG circular plates are investigated.  相似文献   

12.
In order to extend the conventional shell model (SM) calculation with harmonic oscillator bases to light nuclei on neutron drip line, a self-similar-structure shell model (SSM) is proposed. We do this by a rescaling of both the kinetic and potential energy terms of the harmonic oscillator so that the single-particle orbit in SSM has its own state(orbit)-dependent frequency. Meanwhile, a new method to imitate the Woods-Saxon potential with harmonic oscillator potential is introduced. By the rescaling method and imitation procedure, all light exotic nuclei together with the light stable nuclei are studied in a unified way. The results are in good agreement with experimental data. Furthermore, the puzzle of the unexistence of 5He, 10Li and 13B is naturaUy explained in SSM.  相似文献   

13.
The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In 208Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by ?0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configuration and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.  相似文献   

14.
The similar source method (SSM) uses an imaginary source distribution to estimate radiated and scattered sound fields. The error analyses in the present study are for possible numerical errors by SSM, solutions of the problem of singularity and non-unique solution by SSM and the effects of possible errors in measurements on the estimation of the sound field by SSM.  相似文献   

15.
This paper proposes a design for all-optical NOR logic gate, based on Mach-Zehnder interferometer (MZI) using quantum-dot semiconductor optical amplifier (QD-SOA). In this regard, a theoretical model for an ultrafast all-optical signal processor is developed using QD-SOA to achieve high bit rate operation. We have demonstrated the NOR gate operation in two cases of with and without an optical control pulse. Simulations have been carried out at data bit rates 160 Gb/s, 200 Gb/s, and 250 Gb/s for the case that control pulse is not applied, and also at data bit rates 1 Tb/s and 2 Tb/s in presence of control pulse which leads to improvement of gain recovery time and ultrafast NOR logic operation. In addition, quality factors of the output signals in presence and without the control pulse at different bit rates with different bias currents have been investigated for pseudo-random binary sequence (PRBS) of word length 28–1.  相似文献   

16.
In order to investigate the behavior of vortices in high-Tc superconductors under low magnetic fields, we have performed scanning SQUID microscopy (SSM) on the ab-surfaces of (La1-xSrx)2CuO4 (LSCO) single crystals at low temperatures. The observed magnetic images clearly demonstrated vortices in units of K0 (=hc/2e) below Tc. Vortices trapped inside the overdoped LSCO tended to be arranged in a one-dimensional manner, while those in optimally doped crystals were randomly distributed. From the variable-temperature SSM measurements, it was directly visualized that the normal state with regular magnetic-field distribution gradually changed into the inhomogeneous Meissner state, and finally vortices evolved, with decreasing temperature.  相似文献   

17.
Different fibre Bragg grating dispersion compensation schemes are studied for a directly modulated 1550 nm single-mode semiconductor laser signal through a standard nonlinear fibre link. The laser diode is simulated by its stochastic rate equations, while the nonlinear Schrödinger equation is used to simulate the propagation. The optimum length for dispersion compensation after transmission through 100 km SSM fibre is studied. Pulses with a FWHM of the order of 65 ps with any linewidth-enhancement factor are reconstructed using pre-compensation or post-compensation with an apodized 5.75 cm chirped fibre Bragg grating.  相似文献   

18.
The characteristics of short optical pulse four-wave mixing (FWM) and amplification in quantum dot semiconductor optical amplifiers (QD-SOAs) are investigated taken into account the effect of the multi-discrete QD energy levels. Different saturation and recovery response for the electron and hole states are observed, which is attributed to different energy spacing between the energy states. We found that the 3 dB saturation energy of QD-SOA depends on the pulse width for short input pulses. Also, the optimum time delay between the probe and pump pulses in QD-SOAs, which provides maximum FWM efficiency in QD-SOAs, is smaller than the optimum delay in quantum well SOA.  相似文献   

19.
This paper presents the parameter design and performance analysis of a 160 Gb/s all-optical XOR gate based on cross-gain modulation (XGM) in a nonlinear Mach-Zehnder interferometer (MZI) with quantum dot semiconductor optical amplifiers (QD-SOAs). Detailed numerical simulations of the QD-SOA parameters and optical signal parameters are performed to elevate the gate performance. With the optimized parameters, a Q factor over 8 dB is obtained. The possibility of operating at higher speed of the XOR gate is demonstrated as well. The results will be helpful for the design and performance analysis of practical quantum dot devices.  相似文献   

20.
The thermodynamic Bethe ansatz equations and free energy for 1D N-component Bariev model under open boundary conditions are derived based on the string hypothesis for both, a repulsive and an attractive interaction. These equations are discussed in some limiting cases, such as the ground state, weak and strong couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号