首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
采用银修饰介孔磷钨酸/二氧化硅(mesoporous HPW/SiO2)催化剂,并研究了其在模拟柴油和真实柴油氧化脱硫反应中的催化性能。通过银修饰介孔HPW/SiO2,结合银离子对有机硫化物的选择吸附性和HPW对有机硫化物的催化氧化活性,以达到选择氧化脱硫的目的。模拟柴油分别采用石油醚、苯、1-辛烯和二苯并噻吩配制,当银离子与HPW的摩尔比为2时,催化剂具有最高的选择催化氧化活性。采用N2 吸附-脱附、XRD、UV-vis和EDS表征了银修饰的介孔HPW/SiO2催化剂,结果表明,银物种分散均匀且以Ag+形式存在。真实柴油的脱硫研究表明,相比介孔HPW/SiO2催化剂,修饰的催化剂介孔Ag2-HPW/SiO2脱硫率提高了4.6%,初始硫含量为1800×10-6的直馏柴油能被脱除至228×10-6,脱硫率为87.3%。介孔Ag2-HPW/SiO2催化剂具有良好的再生性能,经再生处理后,Ag的损失量极少,其三次脱硫率达到84.8%。  相似文献   

2.
Keggin结构杂多酸盐的合成、表征及催化燃油超深度脱硫   总被引:1,自引:0,他引:1  
以六种金属盐和磷钨酸为原料制备了Keggin结构杂多酸盐Mx/nH0.6PW(Zr0.6H0.6PW、Al0.8H0.6PW、Zn1.2H0.6PW、Fe0.8H0.6PW、Ti0.6H0.6PW和Sn0.6H0.6PW)和Alx/3H3-xPW(AlPW、Al0.8H0.6PW、Al0.5H1.5PW、Al0.3H2.1PW和Al0.1H2.7PW)催化剂,并对催化剂进行了FTIR、XRD、DSC/TGA、ICP等表征。对催化剂进行催化活性筛选后,确定Al0.5H1.5PW为最佳催化剂。研究了以Al0.5H1.5PW为催化剂,过氧化氢为氧化剂,乙腈为萃取剂的催化氧化萃取燃油超深度脱硫技术。考察了催化剂用量、氧硫比、催化剂与氧化剂预接触时间、反应温度和初始硫含量对脱硫效果的影响。结果表明,在催化剂用量为模拟油品质量的0.25%,氧硫比为10,催化剂与过氧化氢预接触8 min,反应温度60℃,初始硫含量为350 mg·L-1的条件下,反应到60 min时硫含量已降至2.5 mg·L-1,脱硫率达99.3%。催化氧化萃取时的脱硫率比单纯萃取时的脱硫率高45.3%,效果十分显著。此外,催化剂用于真实汽、柴油的催化氧化脱硫实验也得到了很好的脱硫效果,且催化剂重复使用5次后,脱硫效率未见明显降低。  相似文献   

3.
酸性离子液体萃取-氧化模拟油品脱硫研究   总被引:6,自引:0,他引:6  
以酸性离子液体N-羧甲基吡啶硫酸氢盐(\[CH2COOHPy\]HSO4)为萃取剂和催化剂,过氧化氢为氧化剂,用于模拟油品(二苯并噻吩溶于正辛烷配制而成)萃取-氧化脱硫反应,考察过氧化氢用量、离子液体用量、反应温度和反应时间对脱硫率的影响。研究结果表明,当氧硫摩尔比(H2O2/S)为6,在10mL模拟油品中加入0.6mL离子液体, 50℃下反应40min,脱硫率可达99.7%。离子液体循环再生使用5次,脱硫率没有明显下降。  相似文献   

4.
以硝酸锆、硝酸铜和硝酸钴为金属源,过硫酸铵作为浸渍液,采用共沉淀浸渍法合成出固体超强酸催化剂S2O82-/ZrO2、S2O82-/ZrO2-CuO和S2O82-/ZrO2-CoO,通过XRD、FT-IR、NH3-TPD、BET对催化剂进行表征。结果表明,Co(钴)改性催化剂S2O82-/ZrO2-CoO在三种催化剂中超强酸位最多。将其作为催化剂,过氧化氢作为氧化剂用于FCC汽油氧化脱硫反应,研究不同反应温度、催化剂用量、反应时间、氧化剂用量对FCC汽油脱硫效果的影响。结果表明,FCC汽油氧化脱硫的最佳条件为:反应温度70 ℃,反应1.5 h,FCC汽油加入量与氧化剂体积比7.5:1,催化剂用量0.02 g/mL。反应产物利用N,N-二甲基甲酰胺进行萃取分离,萃取剂/汽油体积比为1:1时,FCC汽油脱硫率最高可达85.34%,回收率为94.45%,并且催化剂表现出较为稳定的催化活性。  相似文献   

5.
磷钨酸季铵盐催化氧化汽油深度脱硫   总被引:5,自引:0,他引:5  
以十六烷基三甲基溴化铵和磷钨酸为原料制备了磷钨酸季铵盐催化剂,并对催化剂进行了红外光谱和SEM表征。研究了磷钨酸季铵盐为催化剂,双氧水为氧化剂,催化氧化法生产低硫汽油技术。考察了萃取剂以及氧化条件和萃取条件对脱硫效果的影响。结果表明,在汽油10 mL,双氧水0.01 mL,催化剂0.0016 g,氧化温度30℃,氧化时间60 m in的条件下,采用复合溶剂LJ-1进行萃取,萃取温度20℃,静置时间15 m in,剂油比为1时,直溜汽油中的硫含量由179.3 mg/L降至10.8 mg/L,脱硫率达94.0%。氧化萃取时的脱硫率比未经氧化直接萃取时的脱硫率高45.6%,氧化脱硫效果显著。  相似文献   

6.
以磷钨酸和氮化碳为原料,合成磷钨酸功能化的氮化碳(g-C3N4/HPW),并采用XRD、SEM、FT-IR对其结构进行表征。以g-C3N4/HPW为催化剂,过氧化氢作为氧化剂,咪唑氟硼酸盐为萃取剂氧化萃取一体法脱除模拟油中的二苯并噻吩(DBT)。考察了反应温度、催化剂加入量、双氧水加入量、萃取剂加入量、硫化物类型等因素对脱硫效果的影响。结果表明,在模拟油为5 mL,g-C3N4/HPW为0.02 g,H2O2加入量为1.0 mL,BF4 为1.5 mL,反应温度70 ℃,反应120 min的条件下,DBT的转化率可达到93%。反应体系循环使用4次催化剂的活性没有明显的降低。  相似文献   

7.
以Ti-MWW为催化剂,考察了不同氧化剂对分别含有苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩等有机硫化物模拟油品氧化反应的影响,结果表明,叔丁基过氧化氢对有机含硫化合物的氧化活性明显高于过氧化氢水溶液。以叔丁基过氧化氢为氧化剂,三种噻吩类含硫化合物氧化的难易顺序为二苯并噻吩> 4, 6-二甲基二苯并噻吩> 苯并噻吩,其氧化活性顺序与含硫化合物中硫原子的电子云密度和空间位阻有关。考察了Ti-MWW/叔丁基过氧化氢催化氧化体系对成品柴油的催化氧化脱硫,结果表明,成品柴油中的含硫化合物可被有效地氧化脱除,在优化的反应条件下,经过两次氧化、萃取后,成品柴油中的总硫含量从1015μg/mL降低至11μg/mL,总脱硫率达到99%。  相似文献   

8.
采用预修饰方法对UiO-66进行配体官能团改性, 通过引入—F调控UiO-66的表面亲疏水性质; 其次, 通过引入—NH2在UiO-66骨架上锚定MoO(O2)2. 接触角测试表明, 氟的引入有效地提高了载体表面的疏水性; 热重分析证明, 氟修饰的UiO-66骨架上存在更多配体缺失, 从而有效提高了整体MOF骨架的Lewis酸性. 以二苯并噻吩(DBT)氧化为氧化脱硫模型反应, 过氧化氢异丙苯(CHP)为氧化剂, 采用正交实验考察了反应温度、 氧硫比及催化剂用量对催化性能的影响, 其中氧硫比是影响DBT转化率的决定性因素. 经过氟改性后的催化剂经过5次催化反应循环后其催化活性未见明显变化, 且骨架仍保持稳定.  相似文献   

9.
过氧磷钨酸催化氧化脱除模拟油中的含硫化合物   总被引:1,自引:0,他引:1  
考察了以H2O2为氧化剂, 过氧磷钨酸为催化剂催化氧化脱除模拟油中的含硫化合物苯并噻吩(BT)和二苯并噻吩(DBT). 讨论了催化剂用量、反应温度、反应时间和剂油体积比等因素对反应的影响. 实验结果表明, 当催化剂用量为0.48%(质量分数), V(H2O2)∶V(Oil)=1∶50, 反应时间为60 min, 反应温度为60 ℃时, BT的脱除率达到96.48%, DBT的脱除率达到99.42%. 动力学研究结果表明, 过氧磷钨酸为催化剂的氧化脱除模拟油中的含硫化合物的反应为表观一级反应.  相似文献   

10.
以双氧水为氧化剂,采用蒸馏水做溶剂,研究了催化氧化-萃取法生产超低硫戊烷技术,考察了催化剂、助催化剂以及氧化条件对脱硫效果的影响。在戊烷10mL、双氧水0.5mL、催化剂钨酸0.009g、助催化剂甲醇0.8mL、温度50℃、时间100min条件下反应,在剂油比为2:1的条件下用蒸馏水于15℃萃取反应混合物15min,戊烷中的硫含量由24.4mg/L降至0.5mg/L,脱硫率可达98.0%。  相似文献   

11.
酸性离子液体萃取/催化二苯并噻吩氧化脱硫反应的优化   总被引:5,自引:1,他引:4  
ö以Brönsted酸性离子液体N-甲基-2-吡咯烷酮磷酸二氢盐(\[Hnmp\]H2PO4)为萃取剂和催化剂,双氧水为氧化剂,二苯并噻吩(DBT)溶于正辛烷为模型油,利用正交实验法优化了DBT氧化脱硫反应工艺。所优化的反应条件为:反应温度60℃,模型油与离子液体体积比为1∶1,氧/硫摩尔比为16, 氧化时间5h;在此条件下模型油脱硫率达99.8%,实际柴油脱硫率为64.3%。由正交实验极差可知,各因素对DBT脱硫率影响的大小依次为:反应温度>反应时间>氧/硫摩尔比>剂油比;离子液体循环利用6次,脱硫率下降不明显。  相似文献   

12.
通过将C_9H_(10)O_2-0.5ZnCl_2双酸型低共熔溶剂固载到Al_2O_3上制备了C_9H_(10)O_2-0.5ZnCl_2/Al_2O_3催化剂。该催化剂采用XRD、FT-IR、SEM、EDS、N_2吸附-脱附技术进行了分析。以C_9H_(10)O_2-0.5ZnCl_2/Al_2O_3为催化剂,过氧化氢为氧化剂研究模拟油中芳香族硫化物的脱除性能。考察反应参数如温度、催化剂加入量、O/S物质的量比、硫化物类型等对催化剂脱硫活性的影响。实验结果表明,在模拟油为5 mL、催化剂量为0.2 g、O/S比为8、反应温度为60℃、反应时间为180 min的条件下,模拟油中二苯并噻吩(DBT)脱硫率为99.2%。此外,在模拟油氧化脱硫中催化剂循环使用六次,其氧化脱硫活性略有降低。研究了C_9H_(10)O_2-0.5ZnCl_2/Al_2O_3催化氧化脱硫的反应机理。  相似文献   

13.
在H2O2/WO3/ZrO2氧化体系中对以甲苯为溶剂、二苯并噻吩(DBT)为模型含硫化合物的模拟油品(硫的质量分数为1540×10-6)进行了氧化脱硫研究,考察了反应温度、反应时间、氧化剂加入量、催化剂用量对DBT转化率的影响。实验结果表明,在反应温度50℃,反应时间90min,氧化剂加入量油/H2O2的体积比为20∶1和催化剂用量0.02g/mL的适宜氧化脱硫条件下,96%以上的DBT氧化为容易分离脱除的二苯并噻吩砜(DBTOs);同时研究了DBT氧化反应动力学,得知DBT氧化反应为一级反应,表观活化能Ea为55.37kJ/mol,指前因子A为3.35×107min-1。  相似文献   

14.
以钒原子取代的Keggin型磷钨杂多酸与不同的季铵类阳离子表面活性剂反应合成了一系列磷钨钒杂多酸相转移催化剂,采用红外和X射线衍射对催化剂进行了表征。以H_2O_2为氧化剂,对模型柴油的氧化脱硫反应进行了研究,考察了季胺类表面活性剂种类、不同季胺盐含量、催化剂用量、氧硫比、反应温度等参数对反应的影响。结果表明,所制备的杂多酸相转移催化剂保留有杂多酸阴离子和季铵盐阳离子的结构特征。[(C_(16)H_(33)(CH_3)_3) N]_3H[PW_(11)VO_(40)]催化剂具有最佳的氧化脱硫性能和重复使用性能,在n(催化剂)/n(模型柴油)=1∶80,n(H_2O_2)/n(模型柴油)=8∶1,反应温度50℃,反应时间3 h的反应条件下,二苯并噻吩的转化率可达到100%;催化剂重复使用五次后,转化率为99.7%。反应过程中,该催化剂与反应物形成微乳体系,如同一个均相混合物,而反应结束体系静置一段时间后,催化剂和产物又形成两相,通过离心法就可以快速分离和回收催化剂。  相似文献   

15.
以钨酸钠为钨源,以乙二胺四乙酸二钠为碳源经过高温煅烧制备了含W的介孔碳材料,采用XRD、SEM、FT-IR、BET对含钨的介孔碳材料进行表征。结果表明,煅烧后介孔碳材料的表面形成了粒状含有结晶水的氧化钨(WO_3·H_2O)。相比于纯的介孔碳材料,含钨介孔碳材料的总比表面积减小。以含W介孔碳材料为催化剂,H_2O_2作为氧化剂,1-丁基-3-甲基咪唑氟硼酸盐([BMIM][BF_4])离子液体作为萃取剂,组成萃取-催化氧化脱硫体系(ECODS)并研究其对模拟油中二苯并噻吩脱除效果。考察了氧化钨负载量、反应温度、H_2O_2加入量、催化剂用量、离子液体用量以及不同类型硫化物对二苯并噻吩脱除的影响。在最佳反应条件下,催化剂对二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)、苯并噻吩(BT)、噻吩(TH)和真实汽油的脱除率分别达到98.6%、65.6%、61.2%、57.8%和64.3%。催化剂回收利用五次之后脱硫率略有降低,仍高达95.2%。  相似文献   

16.
有机-无机杂多酸类离子液体催化汽油超声氧化脱硫   总被引:2,自引:0,他引:2  
合成了一系列有机-无机杂多酸类离子液体, 并将其应用于超声作用下的催化模拟汽油氧化脱硫反应. 结果表明, 在超声波辅助下, 不仅反应时间大大缩短, 而且脱硫效率也大幅提高. 在合成的一系列催化剂中, Zr0.25[BMIM]HPW12O40表现出最佳的催化活性. 考察了超声波功率、 超声/间隙时间、 催化剂用量、 H2O2用量、 反应温度及反应时间等因素对脱硫效果的影响. 以Zr0.25[BMIM]HPW12O40为催化剂, 在优化的条件下[n(Cat.)=0.008 mmol, V(H2O2)=40 μL, V(模拟油)=10 mL, V(乙腈)=1 mL, 温度25 ℃, 时间10 min, 超声功率300 W, 超声时间2 s, 间隙时间1.5 s], 二苯并噻吩(DBT)的脱硫率达到97.8%; 该催化剂循环使用5次后, 脱硫率仍为81.9%; 其对不同硫化物的催化活性顺序为DBT>4,6-二甲基苯并噻吩(4,6-DMDBT)>乙硫醚>苯硫醚>正丁硫醇>甲基苯基硫醚>苯并噻吩(BT)>噻吩.  相似文献   

17.
采用浸渍法制备了不同B2O3负载量(e.g. 5%~20% (w))的Ag/TiO2-B2O3-Al2O3吸附剂。以含硫量为245.36mg(S)/L 的商业柴油作为考察对象,常温常压下采用静态评价进行吸附脱硫性能研究。结果表明,B2O3改性后的Ag/TiO2-Al2O3吸附剂的柴油吸附脱硫活性有了较大提高,当B2O3的负载量为15%时,吸附剂的吸附脱硫活性最高,2%Ag/4%TiO2-15%B2O3-Al2O3 (w)的饱和吸附硫容达到2.36mg(S)/g 吸附剂。这对于未经预处理的商业柴油而言,吸附脱硫活性已经达到较高水平。采用N2物理吸附、O2化学吸附、X射线衍射(XRD)、NH3程序升温脱附(NH3-TPD)、傅里叶红外光谱(FT-IR spectra)、11B核磁共振(11B-NMR)等表征手段对不同负载量B2O3改性Ag/TiO2-Al2O3吸附剂的织构性质、晶相结构和表面酸性的影响进行研究。关联活性测试和表征结果发现,吸附剂的吸附脱硫活性主要与吸附剂的表面弱酸性有关,而B2O3改性在吸附剂表面引入了较多的四配位的BO4物种,能显著增加吸附剂表面弱酸性位点数量,提高吸附剂的吸附脱硫活性。  相似文献   

18.
以钨酸和氧化石墨烯为原料,利用浸渍法将钨酸负载到氧化石墨烯上制得H2WO4/GO。采用XRD、FT-IR、SEM、BET表征确定H2WO4/GO的形态及其结构。以H2WO4/GO作为催化剂,H2O2作为氧化剂,乙腈作为萃取剂超声氧化脱除模拟油中的二苯并噻吩(DBT)。实验表明,在模拟油为5 mL,钨酸的负载量为30%(质量分数),催化剂为0.02 g,乙腈为1 mL,H2O2/S(mol ratio)为8,反应温度为50℃,超声功率为150 W的最佳反应条件下,二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)、苯并噻吩(BT)的脱除率分别达到96.6%、81.2%、72.8%。同时,考察了催化剂的循环使用性能,并对超声氧化脱硫机理进行了研究。  相似文献   

19.
利用磷酸氢二钠、偏钒酸纳和钨酸钠为原料,合成了具有Keggin结构的磷钨钒杂多化合物(H5PW10V2O40),并与1-丁基-3-甲基咪唑溴(BmimBr)离子液体反应生成一种杂多酸杂化材料([Bmim]5PW10V2O40)。利用红外光谱(FT-IR)、X射线衍射光谱(XRD)和紫外可见光谱(UV-vis)对所合成的杂多酸杂化材料进行表征。结果表明,[Bmim]5PW10V2O40具有咪唑阳离子基团和Keggin型杂多阴离子基团的结构特征,并且两种基团之间存在相互作用。以SiO_2为载体制备负载型的杂多酸杂化材料催化剂[Bmim]5PW10V2O40/SiO_2,以H2O_2作为氧化剂,考察该催化剂对模拟油中DBT的氧化性能,并优化氧化反应条件,在反应温度40℃,O/S物质的量比为3.0的条件下,反应50min,模拟油品中的DBT的转化率可以达到100%。催化剂可以通过离心法分离,经过干燥之后,可以循环使用至少七次,而对DBT的氧化活性没有降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号