首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary: Compartmentalization in atom transfer radical polymerization (ATRP) in dispersed systems at low conversion (<10%) has been investigated by means of a modified Smith–Ewart equation focusing on the system n‐butyl acrylate/CuBr/4,4′‐dinonyl‐2,2′‐dipyridyl at 110 °C. Compartmentalization of both propagating radicals and deactivator was accounted for in the simulations. As the particle diameter (d) decreases below 70 nm, the polymerization rate (Rp) at 10% conversion increases relative to the corresponding bulk system, goes through a maximum at 60 nm, and thereafter decreases dramatically as d decreases further. This behavior is caused by the separate effects of compartmentalization (segregation and confined space effects) on bimolecular termination and deactivation. The very low Rp for small particles (d < 30 nm) is due to the pseudo first‐order deactivation rate coefficient being proportional to d−3.

Simulated propagating radical concentration ([P•]) as a function of particle diameter (d) at 10% conversion for ATRP of n‐butyl acrylate ([nBA]0 = 7.1 M , [PBr]0 = [CuBr/dNbpy]0 = 35.5 mM ) in a dispersed system at 110 °C. The dotted line indicates the simulated [P•] in bulk at 10% conversion.  相似文献   


2.
Kinetic simulations are reported, where the ATRP equilibrium constant KATRP is varied and the rates and degree of control in different ATRP systems are evaluated. The apparent rate constant kapp increases with increasing KATRP, but a maximum is reached. The limit of control is passed before the maximum, i.e. when KATRP is increased further, apparent first‐order kinetics and well‐controlled molecular weights will no longer be obtained. The equilibrium constant at which the limit of control is reached varies linearly with the propagation rate constant. This enables the design of well controlled ATRP systems. The influence of the conversion and chain length dependence of the termination rate constant on the simulation results is discussed.

  相似文献   


3.
Kinetic modeling is used to better understand and optimize initiators for continuous activator regeneration atom‐transfer radical polymerization (ICAR ATRP). The polymerization conditions are adjusted as a function of the ATRP catalyst reactivity for two monomers, methyl methacrylate and styrene. In order to prepare a well‐controlled ICAR ATRP process with a low catalyst amount (ppm level), a sufficiently low initial concentration of conventional radical initiator relative to the initial ATRP initiator is required. In some cases, stepwise addition of a conventional radical initiator is needed to reach high conversion. Under such conditions, the equilibrium of the activation/deactivation process for macromolecular species can be established already at low conversion.

  相似文献   


4.
ATRP of 2‐(N,N‐dimethylamino)ethyl acrylate (DMAEA) was investigated using CuBr or CuCl with different multidentate ligands. The catalyst was found active for DMAEA polymerization when ligated with tris[2‐(N,N‐dimethylamino)ethyl]amine. Good control over molecular weight was achieved, but quaternization of the terminal monomeric/polymeric tertiary amine by the C Br group of polyDMAEA caused chain termination. Using a chloride‐based system helped to suppress chain termination. Amphiphilic poly(methyl acrylate)‐block‐polyDMAEA was synthesized using polyMA as a macroinitiator.

Molecular weights and polydispersities of polyDMAEA versus DMAEA conversion for different catalyst systems.  相似文献   


5.
Summary: A novel type of glycerol‐derived, water‐soluble polycarbonate with pendant, primary hydroxyl groups was prepared from 2‐(2‐benzyloxyethoxy)trimethylene carbonate (BETC). Ring‐opening polymerization of BETC and 2,2‐dimethyltrimethylene carbonate (DTC) gave narrow distribution of homopolymers or random copolymers with high molecular weights. The protecting benzyl groups were removed by catalyzed hydrogenation at atmosphere H2 pressure to give hydroxyl polycarbonates without observable changes on the polymer backbone and molecular weight distribution. The hydrophilicity of the copolymers increases with the increase in the hydrophilic glycerol‐derived carbonate content.

Synthesis of the glycerol‐derived polycarbonate.  相似文献   


6.
Summary: The recently developed initiation system, activators generated by electron transfer (AGET), is used in atom transfer radical polymerization (ATRP) in the presence of a limited amount of air. Ascorbic acid and tin(II ) 2‐ethylhexanoate are used as reducing agents in miniemulsion and bulk, respectively. An excess of reducing agent consumes the oxygen present in the system and, therefore, provides a deoxygenated environment for ATRP. ATRP of butyl acrylate is successfully carried out in miniemulsion and in the presence of air. During polymerization the radical concentration remains constant. The polymerization reaches over 60% monomer conversion after 6 h, which results in polymers with a predetermined molecular weight = 14 000 g · mol−1 and a low polydispersity ( = 1.23). AGET ATRP of styrene is also successful in bulk in the presence of air, as evidenced by linear semi‐logarithmic kinetics, which leads to polystyrene with an of 13 400 g · mol−1 and a low polydispersity index ( = 1.14).

Appearance of miniemulsion before and after the reducing agent ascorbic acid was added (left); and GPC traces representing molecular weights during the AGET ATRP of BA in miniemulsion in the presence of air (right).  相似文献   


7.
We report a new type of step‐growth radical addition‐coupling polymerization (RACP) involving consecutive addition of carbon‐centered radical derived from α,α′‐dibromo dibasic ester to NO double bond of C‐nitroso compound followed by cross‐coupling of carbon‐centered radical and in situ formed nitroxyl radical, which produces alternating copolymers with high molecular weight and unimodal molecular weight distribution from saturated and unsaturated monomers.

  相似文献   


8.
Summary: This contribution describes the graft polymerization of polystyrene (PS) by atom transfer radical polymerization at 50, 60, and 75 °C. Thick PS brushes were grown from initiator‐functionalized PGMA layers on silicon, and constant growth rates provide indirect evidence that the polymerizations were controlled.

Formation of polystyrene brushes at T < Tg by ATRP of styrene from α‐bromoester initiator‐functionalized poly(glycidyl methacrylate) layers.  相似文献   


9.
A novel tetradentate amine ligand namely N,N,N′,N″,N‴;,N‴;‐hexaoligo(ethylene glycol) triethylenetetramine (HOEGTETA) was employed in the homogenous ATRP of MMA in anisole using CuBr and CuBr2 as the catalyst and ethyl 2‐bromoisobutyrate (EBiB) as an initiator. The effect of the polymerization temperature and the various ratios of Cu(I) to Cu(II) were investigated in detail. Moreover, we demonstrated the ATRP of MMA by using only Cu(II) in the absence of any free radical initiator, reducing agent, or air. The ATRP of MMA with the use of only Cu(II) and HOEGTETA or N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) resulted in well‐defined PMMA.

  相似文献   


10.
In this Communication, the copolymerization of ethylene with a sterically hindered α‐olefin comonomer, γ‐trisubstituted 3,3‐dimethyl‐1‐butene (DMB), using a chain‐walking Pd‐diimine catalyst, [(ArNC(Me) (Me)CNAr)Pd(CH3)(NCMe)]SbF6 (Ar2,6‐(iPr)2C6H3) ( 1 ) is reported. In spite of its high steric bulkiness in the close proximity of the double bond, appreciable DMB incorporations (up to 3 mol‐%) are successfully achieved in the copolymers. The chain microstructure of the copolymers is elucidated, and the effect of DMB incorporation on polymer topology and thermal properties are examined. This work thus demonstrates the high capability of the Pd‐diimine catalyst in incorporating sterically encumbered α‐olefins.

  相似文献   


11.
A series of well‐defined rod‐coil PAA‐b‐DPS block copolymers, containing Fréchet‐type dendronized polystyrene (DPS) with different generation as a rod‐like hydrophobic block and poly(acrylic acid) (PAA) as a hydrophilic coil were synthesized. The procedure included the following steps: the precursor PMA‐b‐DPS copolymer was prepared through ATRP of Fréchet‐type dendritic styrene macromonomer bearing the first to the third generation (G1–G3), respectively, initiated by poly(methyl acrylate) (PMA‐Br). Then, by converting PMA into PAA by subsequent hydrolysis, the targeted amphiphilic copolymers were obtained. Moreover, by using the rod‐coil amphiphiles as building blocks, large compound micelles and vesicles were formed in a binary solvent mixture of DMF/H2O. Morphological changes in self‐assembly showed dependence on the length of the dendronized block.

  相似文献   


12.
A supramolecular complex between an ionic monomer 3‐sulfopropyl methacrylate (SPMAK) and crown ether 18‐crown‐6 (18C6) has been employed to prepare a strong anionic cylindrical polyelectrolyte brush poly(potassium 3‐sulfopropyl methacrylate) (PSPMAK) by atom transfer radical polymerization (ATRP) in polar solvent dimethyl sulfoxide (DMSO). This strategy solved the problem of the solubilities of the incompatible hydrophobic poly‐initiator and hydrophilic ionic monomer. The formation of the PSPMAK brush is well proven by 1H NMR, aqueous gel permeation chromatography (GPC), dynamic light scattering (DLS), static light scattering (SLS), atomic force microscopy (AFM), and cryogenic transmission electron microscopy (cryo‐TEM) measurements. Cleavage of the side chains and further analysis reveal that the initiating efficiency of the polymerization is as low as 0.35.

  相似文献   


13.
The synthesis of diblock copolymers of aromatic polyether and polyacrylonitrile (PAN) was conducted by chain‐growth condensation polymerization (CGCP) and atom transfer radical polymerization (ATRP) from an orthogonal initiator. When CGCP for aromatic polyether was carried out from a PAN macroinitiator obtained by ATRP with an orthogonal initiator, decomposition of the PAN backbone occurred. However, when ATRP of acrylonitrile was conducted from an aromatic polyether macroinitiator obtained by CGCP followed by introduction of an ATRP initiator unit, the polymerization proceeded in a well‐controlled manner to yield aromatic polyether‐block‐polyacrylonitrile (polyether‐b‐PAN) with low polydispersity. This block copolymer self‐assembled in N,N‐dimethylformamide to form bundle‐like or spherical aggregates, depending on the length of the PAN units in the block copolymer.

  相似文献   


14.
A synthetic method with broad spectrum of application in the preparation of self‐organizing amphiphilic copolymers having poly(glycerol monomethacrylate) (PG2MA) as a hydrophilic part is herein reported. The approach relies on the facile preparation of silylated glycerol monomethacrylate (G2MA‐TMS) monomer, and its controlled atom transfer radical polymerization (ATRP) in organic media, which produced well‐defined (co)polymers with predictable molar mass and low dispersity, followed by desilylation. The wide scope of such a strategy was demonstrated by the successful synthesis of original polycaprolactone‐b‐poly(glycerol monomethacrylate) (PCL‐b‐PG2MA) diblock copolymers with the ability to self‐assemble into ordered structures (micelles and vesicles) in an aqueous medium.

  相似文献   


15.
Kinetic simulations using the composite kt model allows a better understanding of the effects of the persistent radical affecting ATRP or for that matter any activation–deactivation system. It also provides a better fit to experimental data in either bulk or solution conditions for ATRP polymerizations carried out at 110 °C. The results suggest that the composite model has broad utility over a wide range of experimental conditions and temperatures. The advantage of incorporating an accurate kt model is that one can then use simulations as predictive tool to obtain polymers with higher chain‐end fidelity or polymers with low PDI values. This becomes important when attempting to use the chain‐ends for further functionalization to make complex polymer architectures. This model can also be used in simulations of miniemulsion or seeded emulsions to determine the effect of compartmentalization with particle size.

  相似文献   


16.
POSS‐functionalized polyisobutylenes (PIBs) were synthesized by carbocationic polymerization using an epoxy‐POSS/TiCl4 initiating system in hexane/methyl chloride (60:40 v/v) solvent mixture at −80 °C. 1H NMR spectroscopy verified the incorporation of one epoxy‐POSS per polymer chain. Light scattering and TEM analysis demonstrated the formation of 50–100 nm sized aggregates and micron‐sized clusters.

  相似文献   


17.
Poly(N‐isopropylacrylamide) (PNIPAM) oligomer containing one adamantyl (AD) and two β‐cyclodextrin (β‐CD) moieties at the chain terminals, AD‐PNIPAM‐(β‐CD)2, was synthesized by atom transfer radical polymerization (ATRP) and successive click reactions. In aqueous solution, AD‐PNIPAM‐(β‐CD)2 spontaneously forms supramolecular thermoresponsive hyperbranched polymers via molecular recognition between AD and β‐CD moieties. To the best of our knowledge, this work represents the first report of the construction of supramolecular thermoresponsive hyperbranched polymers from well‐defined polymeric AB2 building units.

  相似文献   


18.
The synthesis of hyperbranched poly(ethylene glycol) (hbPEG) in one step was realized by random copolymerization of ethylene oxide and glycidol, leading to a biocompatible, amorphous material with multiple hydroxyl functionalities. A series of copolymers with moderate polydispersity ( < 1.8) was obtained with varying glycidol content (3–40 mol‐%) and molecular weights up to 49 800 g mol−1. The randomly branched structure of the copolymers was confirmed by 1H and 13C NMR spectroscopy and thermal analysis (differential scanning calorimetry). MTS assay demonstrated low cell toxicity of the hyperbranched PEG, comparable to the highly established linear PEG.

  相似文献   


19.
Initiators for continuous activator regeneration in atom transfer radical polymerization (ICAR ATRP) is a new technique for conducting ATRP. ICAR ATRP has many strong advantages over normal ATRP, such as forming the reductive transition metal species in situ using oxidatively stable transition metal species and a lower amount of metal catalyst in comparison with the normal ATRP system. In this work, the iron‐mediated ICAR ATRP of styrene and methyl methacrylate are reported for the first time using oxidatively stable FeCl3 · 6H2O as the catalyst in the absence of any thermal radical initiator. The kinetics of the polymerizations and effect of different polymerization conditions are studied. It is found that the polymerization of styrene can be conducted well even if the amount of iron(III ) is as low as 50 ppm.

  相似文献   


20.
Summary: An enzymatic one‐pot procedure has been developed for the synthesis of difunctional polyesters containing terminal thiols and acrylates. Candida antarctica lipase B was used as a catalyst for the ring‐opening polymerization of ω‐pentadecalactone. The polymerization was initiated with 6‐mercaptohexanol, then terminated with γ‐thiobutyrolactone or vinyl acrylate to create two types of difunctional polyesters with a very high content of thiol‐thiol or thiol‐acrylate end‐groups.

Difunctionalization of poly‐PDL.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号