首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
New imidazole‐functionalized disubstituted polyacetylene was synthesized by utilizing the postfunctional strategy. In addition, its ability to sense copper ions and α‐amino acids by fluorescence quenching has been studied. The quenching of the fluorescence of the imidazole‐functionalized disubstituted polyacetylene was observed at a very low level of Cu2+ (7.0 × 10−7 mol · L−1). The fluorescent intensity decreased rapidly upon the increase of the concentration of the added solution of Cu2+. It was expected that the addition of α‐amino acids to the solution of the polyacetylene/Cu2+ complex could turn on the fluorescence of the polyacetylene, if α‐amino acids could remove the copper ions from the complex. Glycine, was used for testing: upon the addition of glycine the quenched fluorescence of P1 turned on immediately. The detection limit was as low as 6.0 × 10−5 mol · L−1.

  相似文献   


2.
A new synthesis of amphiphilic biodegradable copolymers consisting of hydrophobic poly(3‐hydroxyalkanoate) (PHA) backbone and hydrophilic poly(ethylene glycol) (PEG) units as side chains is described. Poly[(3‐hydroxyoctanoate)‐co‐(3‐hydroxyundecenoate)] (PHOU) was first methanolyzed and its unsaturated side chains were quantitatively oxidized to carboxylic acid. Esterification with propargyl alcohol led to an alkyne‐containing “clickable” PHA in 71% conversion. Its reactivity was successfully demonstrated by grafting azide‐terminated PEG chains of 550 and 5 000 g · mol−1, respectively. All products were fully characterized using GPC, 1H, and COSY NMR.

  相似文献   


3.
It is demonstrated by experiment and simulation that the commercially available thioketone 4,4‐bis(dimethylamino)thiobenzophenone is capable of controlling AIBN‐initiated bulk butyl acrylate polymerization at 80 °C. On the basis of molecular weight data and from monomer conversion versus time curves, the associated rate parameters are estimated. The addition rate coefficient, kad, for the reaction of a propagating chain with the thioketone is close to 106 L · mol−1 · s−1 and the fragmentation rate coefficient, kfrag, is around 10−2 s−1 giving rise to large equilibrium constants in the order of 108 L · mol−1. Furthermore, cross‐ and self‐termination of the dormant radical species are identified to be operational.

  相似文献   


4.
Summary: The synthesis of PEDOT nanoparticles and vesicles by dispersion polymerization in a methanol/water mixture (3/2, v/v) is reported, using either ammonium persulfate or iron(III) p‐toluenesulfonate as oxidants and α‐EDOT‐PEO as a reactive stabilizer. The influence of the oxidant as well as the α‐EDOT‐PEO molar mass and concentration on the core‐shell particle morphology and conductivity properties have been investigated. PEDOT particles with conductivities up to 1.5 × 10−2 S · cm−1 have been obtained in high yield.

TEM image of PEDOT vesicles prepared using PEO‐based stabilizers of 25 000 g · mol−1 in water/methanol mixture (2:3 v/v) at room temperature using ammonium persulfate as an oxidant.  相似文献   


5.
The extraordinary mechanical and swelling/deswelling properties of nanocomposite (NC) gels are attributed to their unique organic (polymer)/inorganic (clay) network structure. In this study, poly(N‐isopropylacrylamide) (PNIPA) was successfully separated from an NC gel network by decomposing the clay (hectorite) using hydrofluoric acid (HF). A very low HF concentration (0.2 wt.‐%) was adequate for the decomposition of the clay without causing any damage to PNIPA. The separated PNIPA had a high (=5.5 × 106 g · mol−1). Also, was almost constant regardless of the clay concentration (Cclay = 1–25 × 10−2 mol · l−1), even though the properties of the NC gel varied widely over this Cclay range. Comparisons of NC gels, PNIPA, and SiO2‐NC gels indicated that the clay platelets specifically play an important role in NC gels.

  相似文献   


6.
The first RAFT mediated polymerization of methyl methacrylate initiated by diradicals derived from Bergman cyclization was performed employing 3,4‐benzocyclodec‐3‐ene‐1,5‐diyne (BCDY) as diradical source and cyanoisopropyldithiobenzoate (CPDB) as RAFT agent. The polymerization was conducted in bulk at 80 °C for 3 h. The concentration of the enediyne was kept constant at 3.0 × 10−2 mol · L−1 and the RAFT agent concentration was varied between 0.0 mol · L−1 and 2.4 × 10−1 mol · L−1. A detailed ESI‐MS analysis reveals the absence of intramolecular termination reactions (ring formation) in the RAFT mediated system, which usually makes diradicalic initiation unfavorable. The presence of polymeric chains propagating at both ends could be confirmed. The conversion of the RAFT mediated polymerization was up to more than two times higher than the RAFT free polymerization at identical conditions. Thus, polymers with narrow polydispersities (1.1 ≤ PDI ≤ 1.5) even at very high molecular weights (near 400 000 Da) were obtained within modest reaction times.

  相似文献   


7.
Summary: The thiophene‐quinoxaline donor–acceptor conjugated copolymer poly[(thiophene‐2,5‐diyl‐alt‐(2,3‐diheptylquinoxaline‐5,8‐diyl)] (PTHQx) was explored as a semiconductor in thin‐film organic field‐effect transistors (OFETs). A hole mobility of 3.6 × 10−3 cm2 · V−1 · s−1 and an on/off current ratio of 6 × 105 were observed in p‐channel OFETs made from spin‐coated PTHQx thin films. The electronic structures of PTHQx and a related thiophene‐thienopyrazine donor–acceptor copolymer were calculated by density functional theory. Atomic force microscopy of PTHQx thin films showed a polycrystalline grain morphology that varied with the substrate.

Output (left) and transfer (right) characteristics of a PTHQx (structure shown) organic field‐effect transistor.  相似文献   


8.
Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non‐sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation‐sulfination reactions whereby the sulfonic acid groups were exclusively placed in ortho positions to the many sulfone bridges, giving these blocks IECs of 4.1 and 4.6 meq·g−1, respectively. Copolymer membranes with IECs of 1.4 meq·g−1 displayed well‐connected hydrophilic nanophase domains and had decomposition temperatures at, or above, 300 °C under air. The copolymer with the tetrasulfonated tetraaryldisulfone segments showed a proton conductivity of 0.13 S·cm−1 at 80 °C under fully humidified conditions, and surpassed that of a perfluorosulfonic acid membrane (NRE212) by a factor of 5 at –20 °C over time.

  相似文献   


9.
Two novel spiro‐configured ter(arylene‐ethynylene) derivatives, TSF‐Cz and TSF‐F , have been designed and synthesized using spiro(fluorene‐9,9′‐xanthene) (SFX) as building blocks, introducing a hole‐transporting carbazole and a fluorene chromophore as the peripheral functional group into the backbone through an oxygen atom. The two well‐defined oligomers possess good solubility, film‐forming quality, and high Tg's at 140 and 126 °C, respectively. In addition, these oligomers exhibit blue photoluminescence (PL) emission both in solution and solid states. The double‐layered devices fabricated using the two materials as the emitter show a sky‐blue emission with a brightness and a current efficiency of 7 613 cd · m−2 and 1.11 cd · A−1 for TSF‐Cz , and 1 507 cd · m−2 and 0.36 cd · A−1 for TSF‐F , respectively.

  相似文献   


10.
To biologically mimic the carbohydrate–protein interactions in artificial systems, one of the challenges is to construct a glycosylated surface with a high glycosyl density to yield a notable ‘glycoside cluster effect’. A novel strategy is presented for high density glycosylation of the surface of a microporous poly(propylene) membrane (MPPM) by click chemistry. It is promising that the surface glycosyl density can be well controlled over a wide range and the maximum value is over 10 µmol · cm−2. The recognition capability of these glycosylated MPPMs to lectins indicates the occurrence of the ‘glycoside cluster effect’ when the glycosyl density on the membrane surface exceeds 0.20 µmol · cm−2.

  相似文献   


11.
A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.

  相似文献   


12.
A simple efficient post‐modification route to the fabrication of hybrid gold nanoparticles with poly(N‐isopropylacrylamide) (PNIPAm) based on click chemistry is described. The PNIPAm was prepared by reversible addition fragmentation chain transfer radical polymerization (RAFT). The PNIPAm was immobilized onto gold nanoparticles with grafting densities of 5.8 chains · nm−2 by a click reaction. The hybrid gold nanoparticles showed a temperature responsive phenomenon as the temperature changed between 20 and 45 °C.

  相似文献   


13.
We focus our attention here on semisquaric acid, which is known to show high acidity, as a new proton dissociating group for proton exchange membranes (PEMs). The introduction of a squaric acid group into aromatic polymers was conducted by the reaction of lithiated aromatic polymers and diisopropoxy squarate, followed by treatment with hydrochloric acid. A resulting polyphenylsulfone membrane with the squaric acid group introduced (PPSf‐SQ, IEC = 4.1 meq·g−1) showed proton conductivity of 1.0 × 10−1 S·cm−1 at 80 °C under 95% relative humidity, which indicates that the semisquaric acid has the potential to become an alternative proton‐conducting group for PEMs.

  相似文献   


14.
The electrical conductivity of composites of exfoliated graphite nanoplatelets (GNPs), including bromine‐doped GNP, and conjugated polyacrylonitrile has been investigated. The focal point is the dual nature of the graphite nanoparticles, which exhibit both intrinsic electrical conductivity and doping capability of semi‐conductive polymers such as conjugated polyacrylonitrile to form charge‐transfer complexes. The conductivity is particularly enhanced in conjugated polyacrylonitrile composites (e.g., with 6 wt.‐% graphite nanoplatelets) where the value rises from 1 × 10−10 to 2 × 10−3 S · cm−1, which reflects jointly the conductivity of the doped semi‐conductive polymer together with the percolation‐based conductivity of the particles.

  相似文献   


15.
Summary: Controlled radical polymerization of n‐butyl acrylate by reverse iodine transfer polymerization (RITP) was achieved in ab initio emulsion polymerization to yield a stable and uncolored latex (particle diameter dp = 106 nm). Hydrolysis of iodine, I2, was responsible for an upward deviation from the targeted molecular weight = 10 400 g · mol−1. The iodide concentration [I] was followed by an iodide selective electrode and the amount of efficient iodine (33%) was successfully correlated with the experimental molecular weight = 31 000 g · mol−1. Finally, a simplified mechanism of RITP in ab initio emulsion polymerization taking into account the iodine hydrolysis was proposed.

Evolution of molecular weight and polydispersity index in RITP of BuA in ab initio emulsion.  相似文献   


16.
Summary: Nanoscaled polyaniline (PANI) fibers with 17–30 nm in diameter were successfully prepared by oxidation polymerization using ferric hydrochloride (FeCl3 · 6H2O) as an oxidant in the presence of p‐toluenesulfonic acid (p‐TSA), β‐naphthalenesulfonic acid (β‐NSA), and camphorsulfonic acid (CSA) as the dopants. The resulting nanofibers show smaller diameter, higher crystallinity and conductivity (10−1 S · cm−1) compared with the nanofibers oxidized by ammonium persulfate (APS), which may be due to the lower oxidation/reduction potential of FeCl3.

SEM images of the PANI nanofibers prepared by oxidation polymerization using ferric hydrochloride as an oxidant.  相似文献   


17.
Novel conjugated silole‐containing polyfluorenes, with green‐ and red‐emissive siloles on the backbone of the blue‐emissive polyfluorene are synthesized for white light electroluminescence (EL) from a single polymer with simultaneous red, green, and blue (RGB) emission. The CIE coordinates (0.33, 0.36) of the white light EL spectra are very close to that for pure white light (0.33, 0.33). The EL spectra are also quite stable at different applied voltages or brightness. The relative intensities for the three RGB peaks, at 450, 505, and 574 nm, were 0.94, 1, and 0.97, respectively, which demonstrates a balanced simultaneous RGB emission. A maximum luminous efficiency of 2.03 cd · A−1 for a brightness of 344 cd · m−2, and a luminous efficiency of 1.86 cd · A−1 for a more practical brightness of 2 703 cd · m−2, were achieved.

  相似文献   


18.
Are hyperbranched polymers capable of forming entanglements? This is the central issue of this contribution. Hyperbranched polyglycerol (hbPG) samples with different molecular weights (600–106 000 g · mol−1), narrow polydispersities (1.2–1.8) and high degrees of branching (≈0.6) were prepared by anionic ring‐opening polymerization. The viscoelastic properties of these polymers with respect to molecular architecture and molar mass were investigated. At low molecular weights “classical” scaling behavior between zero shear viscosity and molecular weight can be observed, whereas between 3 000 and 10 000 g · mol−1 a plateau‐like area is found. The results indicate entanglement dynamics when exceeding a critical molar mass ( ≈ 20 000 g · mol−1) due to entangled hyperbranched polyglycerols.

  相似文献   


19.
A series of amphiphilic poly(L ‐leucine)‐block‐poly(ethylene glycol)‐block‐poly(L ‐leucine) (PLL‐PEG‐PLL) hybrid triblock copolymers have been synthesized. All the blocks in this system have good biocompatibility and low toxicity. The PLL‐PEG‐PLL copolymers could self‐assemble into micelles with PLL blocks as the hydrophobic core and PEG blocks as the hydrophilic shell, which were characterized by FT‐IR, 1H NMR, and transmission electron microscopy analysis. The critical micellar concentration of the copolymer was 95.0 mg · L−1. The circular dichroism spectrum shows that the PLL segments adopt a unique α‐helical conformation, which is found to play an important role in controlling the drug release rate. The drug release could be effectively sustained by encapsulation in the micelles. The copolymers may have potential applications in drug delivery.

  相似文献   


20.
Summary: A well‐defined flat model of a supported homogeneous polyolefin catalyst is prepared on the basis of an immobilized bis(imino)pyridyl iron complex on a super flat silica surface. The amount of supported catalyst precursor is quantified using XPS. This model catalyst remains active over extended periods, i.e., an average activity of 0.25 × 103 kg PE · (molCat · h · bar)−1 is obtained for 24 h of ethylene polymerization. The morphology of the nascent polyethylene film is investigated by SEM.

A side‐view SEM image of the PE produced from the supported bis(imino)pyridyl Fe catalyst.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号