共查询到17条相似文献,搜索用时 93 毫秒
1.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能. 相似文献
2.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%. 相似文献
3.
通过改性Pechini方法合成不同Co含量的富锂正极材料Li[Li(1/3-x/3)CoxMn(2/3-x/3)]O2 (x=0.4, 0.5, 0.6). XRD研究结果表明, 不同Co含量的富锂正极材料均具有良好的层状结构, 结晶度高. 电化学测试结果表明材料的初始容量随Co含量的增加而增加, 在200~220 mAh/g之间. 其中x=0.4材料的循环性能最佳, 在0.5 C (100 mA/g)时, 循环50次后的容量保持率为75%. 容量微分曲线研究结果表明在3.5 V以下出现了Mn4+/Mn3+的还原峰, 并随循环次数的增加峰面积加大. 循环过程的XRD研究表明, 随着充放电次数的增加, 富锂正极材料的层状结构逐渐向尖晶石相转变, 且有杂质相MOx (M=Co, Mn)生成, 导致容量衰减. 相似文献
4.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。 相似文献
5.
Li[Mn1/3-x/3 Ni1/3-x/3 Co1/3-x/3 Crx ]O2系列正极材料的合成及性能研究 总被引:1,自引:0,他引:1
采用改进的固相法一步反应成功制备了掺杂Cr的系列正极材料Li[Mn1/3-x/3Ni1/3-x/3Co1/3-x/3Crx]O2(x=0, 0.015, 0.025, 0.050, 0.100),用XRD, SEM和充放电测试等考察了它们的物理性质和电化学性能.结果表明,所合成的正极材料具有O2层状结构,规则的形貌和均匀的粒径尺寸分布,其嵌锂脱锂均为一步机理.加入适量的Cr可提高该系列正极材料的电化学性能和循环稳定性.x=0.015时的正极材料电化学性能最佳,室温下其首次放电比容量为138.60 mAh·g-1,并且循环性能最好. 相似文献
6.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。 相似文献
7.
以一定比例的LiCl-LiNO3为低熔点共混物,采用熔盐法合成了电化学性能良好的LiNi0.5Mn1.5O4,XRD表征结果显示产物为单一尖晶石相,SEM表征显示出材料良好的晶形,充放电测试结果显示出材料在4.7V平台附近有较大的可逆容量,在4.1V平台附近仅有较少的可逆容量。文章讨论了影响产物晶形和性能的各种因素,建议通过退火、改变合成气氛来消除4.1V平台的产生;研究结果还显示,容量的损失主要发生在第一次放电过程中在高电位区时的电解液的氧化分解,建议通过更换适合在高电位条件下工作的电解液来克服此问题:同时,通过调整低熔点共混物的配比、气氛、反应时间等条件可以实现对产物的结晶形态和大小进行适当的控制,显示了该方法在制备LiNi0.5Mn1.5O4材料中的应用前景。 相似文献
8.
以球磨结合焙烧的方法制备锂离子电池正极材料Li3V2(PO4)3/C.XRD、EIS表征及以该材料作正极的恒电流循环测试表明,所得产物为晶体结构发育良好的单斜晶系Li3V2(PO4)3.在0.1C、0.25C和0.5C倍率下,首次放电比容量分别为150.6、134.1和107.1mAh·g-1.0.25C循环130周后容量保持率为87.3%,而0.5C循环105周后容量保持率仍达到87.2%.锂离子在材料中的嵌入、脱出伴随明显的两相转变过程.电荷传递阻抗和SEI膜阻抗是影响材料倍率性能的主要因素. 相似文献
9.
通过共沉淀与同相反应法制备层状的 LiNi0.45 Mn0.45Co0.10O2,并利用X射线衍射(XRD)和电子扫描显微镜(SEM)测定材料的结构和形貌.在2.5~4.5 V范围内,以0.1 C(28 mA·g-1)放电,LiNi0.45Mn0.45Co0.10O2正极材料的起始放电容量达到167.2 mAh·g-1,但循环性能较差.当采用 A1F3包覆后,材料的循环性能得到明显改善.利用电化学阻抗谱(EIS)技术探索AIF3包覆对正极材料的电化学性能改善机理,实验结果表明:AIF3包覆层能够阻止电解液对正极材料的溶解和侵蚀,稳定其层状结构,同时降低了电极界面阻抗.冈此A1F3包覆技术足一种改善LiNi0.45Mn0.45Co0.10O2材料电化学件能的有效方法和工具. 相似文献
10.
应用溶胶-凝胶法合成LiNi(0.75-x)Co0.25TixO2(x=0,0.1,0.25)系列正极材料,其结构、形貌、粒度、电化学性能由TG、XRD、SEM和电池充放电测试表征研究表明,材料的电化学性能与钛掺杂量密切相关.在钴含量不变的情况下,随着Ti含量(x)的增加,材料由六方层状结构逐渐向立方结构转变,x=0.25时,出现了立方相与六方相共存.根据实验和理论计算结果简要讨论了钛掺杂对正极材料LiNi0.75Co0.25O2结构和电化学性能的影响. 相似文献
11.
以Li2CO3,Ni(NO3)2,Co2O3和Mn O2为原料,经流变相法合成了锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2(1),其结构和形貌经XRD和SEM表征。考察了煅烧温度(T)和煅烧时间(t)对1Tt电化学性能的影响。采用乙炔黑作导电剂,制备了1Tt的锂离子正极材料(2Tt)。电化学性能测试结果表明:于800℃煅烧12 h制备的280012电化学性能最好。在充放电条件[2.5 V~4.5 V,0.2 C倍率]下,280012首次放电比容量为180 m Ah·g-1,循环性较好。 相似文献
12.
13.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li [Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni03Co013]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.0Mn054Ni0.13Co013]O2的电化学性能.在2.0-4.8 V (vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li02Mn0.54Ni0.13Co013]O2颗粒的界面膜电阻与电化学反应电阻. 相似文献
14.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2的电化学性能.在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻. 相似文献
15.
Yongseon Kim 《International journal of quantum chemistry》2019,119(24):e26028
The doping behavior of Zr in LiNi8/12Co2/12Mn2/12O2 (LNCM) is investigated by a simulation of the phase equilibria for the Li-(M*,Zr)-O system (M* = Ni, Co, Mn) based on first-principles calculations followed by a thermochemical post-analysis of the resultant phase diagrams. The results indicate that the stable state at the synthetically stoichiometric composition of LNCM with Zr is a mixture of undoped LNCM with a Li2ZrO3 secondary phase; doping of Zr in the LNCM crystal is not thermodynamically favored. The energies of various states comprising LNCM supercells with defects, secondary phases, and Zr doping are examined, and the equilibrium doping concentration of Zr is calculated by considering the entire LNCM:Zr crystal as a statistical combination of these states. The doping concentration of Zr in the LNCM crystal is calculated to be very low, which enables balanced control between doping and coating, as recently reported through experimentation. The dopability of Zr is expected to increase with the depletion of O2 supply during the heating of a system with a precisely controlled Li to M* ratio, but this behavior is affected by the formation of defects, especially by M* substitution for Li. 相似文献
16.
Ti, F复合掺杂改进LiNi1/3Co1/3Mn1/3O2正极材料的电化学性能 总被引:5,自引:0,他引:5
采用复合离子掺杂技术对LiNi1/3Co1/3Mn1/3O2进行改性, 并对材料的结构及电化学性能进行了考察. 相似文献
17.
Jibin Zhang Yanjun Zhong Xiaxing Shi Zhuo Zheng Weibo Hua Yanxiao Chen Wenyuan Liu Benhe Zhong 《中国化学》2015,33(11):1303-1309
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co‐precipitation method using Li2CO3 as template and lithium‐source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge‐discharge cycling. The results indicate that the as‐synthesized materials by this novel method own a well‐ordered layered structure α‐NaFeO2 [space group: R‐3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g?1 at 0.1 C (1 C=180 mA·g?1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh·g?1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge‐discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability. 相似文献