首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The free volume in thin films of poly(N‐isopropylacrylamid) end‐capped with n‐butyltriocarbonate (nbc‐PNIPAM) is probed with positron annihilation lifetime spectroscopy (PALS). The PALS measurements are performed as function of energy to obtain depth profiles of the free volume of nbc‐PNIPAM films. The range of nbc‐PNIPAM films with thicknesses from 40 to 200 nm is focused. With decreasing film thickness the free volume increases in good agreement with an increase in the maximum swelling capability of the nbc‐PNIPAM films. Thus in thin hydrogel films the sorption and swelling behavior is governed by free volume.

  相似文献   


2.
Poly(N‐isopropylacrylamide) (PNIPAM) oligomer containing one adamantyl (AD) and two β‐cyclodextrin (β‐CD) moieties at the chain terminals, AD‐PNIPAM‐(β‐CD)2, was synthesized by atom transfer radical polymerization (ATRP) and successive click reactions. In aqueous solution, AD‐PNIPAM‐(β‐CD)2 spontaneously forms supramolecular thermoresponsive hyperbranched polymers via molecular recognition between AD and β‐CD moieties. To the best of our knowledge, this work represents the first report of the construction of supramolecular thermoresponsive hyperbranched polymers from well‐defined polymeric AB2 building units.

  相似文献   


3.
Summary: An initiator for nitroxide mediated ‘living’ free radical polymerization was prepared with a fluorescent tag attached to the initiating alkyl radical terminus. This was used to synthesize amphiphilic poly(acrylic acid)‐block‐polystyrene diblock copolymers, which self assembled in a tetrahydrofuran/buffer solution to form structures that are visible by fluorescence.

  相似文献   


4.
Poly(2‐hydroxyethyl methacrylate)‐block‐poly(N‐isopropylacrylamide) (PHEMA‐b‐PNIPAM) was prepared by controlled surface‐initiated ATRP from silicon substrates, and the resulting block copolymers were successfully converted into the corresponding PSEMA‐b‐PNIPAM by esterification of the hydroxy groups on the PHEMA block using excess of succinic anhydride. The PSEMA‐b‐PNIPAM block copolymer brushes respond to both temperature and pH stimuli. The double‐responsive behavior of the block copolymer brushes in solution was investigated by height imaging and force–distance measurements of AFM. The results clearly show the responsive behavior of the smart block copolymer brushes.

  相似文献   


5.
A series of novel temperature and pH responsive block copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(L ‐lysine) (PLL) were synthesized. The effect of pH and the length of PLL on the lower critical solution temperature (LCST) of PNIPAM, and the self‐assembly of these PLL‐based copolymers induced by temperature and pH changes were investigated by the cloud point method, dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM). These PNIPAM‐b‐PLL copolymers can self‐assemble into micelle‐like aggregates with PNIPAM as the hydrophobic block at acidic pH and high temperatures; and at alkaline pH and low temperatures, they can self‐assemble into particles with PLL as the hydrophobic block. The copolymers may have potential applications in biotechnological and biomedical areas as drug release carriers.

  相似文献   


6.
We report a facile method to accomplish the crosslinking reaction of PVA with SWNTs, MWNTs, and C‐60 using MW irradiation. Nanocomposites of PVA crosslinked with SWNT, MWNT and C‐60 were prepared expeditiously by reacting the respective carbon nanotubes with 3 wt.‐% PVA under MW irradiation, maintaining a temperature of 100 °C, representing a radical improvement over literature methods to prepare such crosslinked PVA composites. This general preparative procedure is versatile and provides a simple route to manufacture useful SWNT, MWNT and C‐60 nanocomposites.

  相似文献   


7.
A mathematical model for the kinetics of copolymerization with crosslinking of vinyl/divinyl monomers in the presence of stable nitroxyl radicals is presented. A reaction scheme considering multifunctional polymer molecules is proposed. The Flory‐Stockmayer theory is used for the post‐gelation period. Average crosslink and cyclization densities are calculated using two different approaches. Good agreement between predicted profiles and experimental data from our and other groups is observed in all cases. Overall monomer concentration, controller/initiator ratio, and crosslinker initial concentration are found to be the governing factors for the development of average crosslink and cyclization densities and therefore for the homogeneity of the resulting polymer network.

  相似文献   


8.
Poly(N‐isopropylacrylamide)‐block‐poly{6‐[4‐(4‐pyridyazo)phenoxy] hexylmethacrylate} (PNIPAM‐b‐PAzPy) was synthesized by successive reversible addition‐fragmentation chain transfer (RAFT) polymerization. In a water/tetrahydrofuran (H2O/THF) mixture, amphiphilic PNIPAM‐b‐PAzPy self‐assembles into giant micro‐vesicles. Upon alternate ultraviolet (UV) and visible light irradiation, obvious reversible swelling‐shrinking of the vesicles was observed directly under an optical microscope. The maximum percentage increase in volume, caused by the UV light, reached 17%. Moreover, the swelling could be adjusted using the UV light power density. The derivation of this effect is due to photoinduced reversible isomerization of azopyridine units in the vesicles.

  相似文献   


9.
Spherical single‐chain‐particles of poly(N‐isopropylacrylamide) were prepared in aqueous solution above the lower critical solution temperature upon the addition of sodium dodecyl sulfate. The size of the single‐chain‐particles was investigated by means of transmission electron microscopy and viscosity measurements of the corresponding solutions, indicating the absence of inter‐chain entanglements among the single‐chain‐particles.

Schematic of the preparation of PNIPAM single‐chain‐globules in solution.  相似文献   


10.
Rapidly shrinking poly(N‐isopropyl acrylamide) (PNIPAM) hydrogels are prepared by crosslinking with self‐assembled nanogels that consist of cholesteryl‐ and methacryloyl‐substituted pullulan (CHPMA). The CHPMA nanogel (Rh = 26.4 nm) was used as a crosslinker for a hydrophilic nanodomain. Transmission electron microscopy images of the nanogel‐crosslinked PNIPAM hydrogel reveal a well‐defined nanoporous structure. The nanogel‐crosslinked PNIPAM hydrogel shows rapid shrinking based on its structure. The shrinking half‐time was ≈2 min, which is about 3 400 times faster than that of a PNIPAM hydrogel crosslinked by methylene(bisacrylamide).

  相似文献   


11.
We report the first example of the synthesis and the “schizophrenic” micellization behavior of a multi‐responsive double hydrophilic ABC miktoarm star terpolymer. A well‐defined miktoarm star terpolymer consisting of poly(ethylene glycol), poly(2‐(diethylamino)ethyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PDEA)‐b‐PNIPAM, was synthesized via the combination of atom transfer radical polymerization (ATRP) and click reaction. Containing pH‐responsive PDEA and thermo‐responsive PNIPAM arms, this novel type of miktoarm star terpolymer molecularly dissolves in aqueous solution at acidic pH and room temperature, but supramolecularly self‐assembles into PDEA‐core micelles at alkaline pH and room temperature, and PNIPAM‐core micelles at acidic pH and elevated temperatures. Most importantly, both types of micellar aggregates possess well‐solvated hybrid coronas.

  相似文献   


12.
Herein, a convenient and general method to simultaneously fix and functionalize polymeric vesicles with sulphydryl groups by the co‐self‐assembly of poly(ethylene oxide)‐block‐poly[3‐(triethoxysilyl)propyl methacrylate] (PEO‐b‐PTESPMA) and 3‐mercaptopropyltrialkoxysilane in an aqueous solution is reported. The presence of sulphydryl groups across the vesicle membrane has been confirmed by using an energy‐filtered technique during TEM analysis and by capturing Au nanoparticles.

  相似文献   


13.
The effect of PAMAM dendrimers (generations G3, G4 and G5) on the fibrillation of α‐synuclein was examined by fluorescence and CD spectroscopy, TEM and SANS. PAMAM dendrimers inhibited fibrillation of α‐synuclein and this effect increased both with generation number and PAMAM concentration. SANS showed structural changes in the formed aggregates of α‐synuclein – from cylindrical to dense three‐dimensional ones – as the PAMAM concentration increased, on account of the inhibitory effect. PAMAM also effectively promoted the breaking down of pre‐existing fibrils of α‐synuclein. In both processes – that is, inhibition and disassociation of fibrils – PAMAM redirected α‐synuclein to an amorphous aggregation pathway.

  相似文献   


14.
Summary: Amphiphilic triblock copolymers (PEOxb‐PDMSyb‐PEOx) with different block lengths were synthesized and multi‐morphological complex crew‐cut, star‐like, and short‐chain aggregates were prepared by self‐assembly of the given copolymers. The morphologies and dimensions of the aggregates can be well controlled by variation of the preparation conditions. TEM, SEM, FFR‐TEM, and LLS studies show the resulting morphologies range from LCMs, unilamellar or multilayer vesicles, LCVs, porous spheres to nanorods.

TEM images of the vesicles formed from PEO‐b‐PDMS‐b‐PEO.  相似文献   


15.
Complex micelles were obtained from PS‐b‐PNIPAM‐b‐PAA micelles and PEG‐b‐P4VP block copolymers via the strong electrostatic interaction and hydrogen bonding between PAA and P4VP blocks in water. The PS block formed the core and the PAA/P4VP complex shell functioned as a semi‐permeable membrane which could control the permeation of small molecules. Between the core and shell, the large fluid‐filled space that was formed with the thermoresponsive PNIPAM gel could retain the loaded drug for a long period of time. With increasing temperature, the shrinkage of the PNIPAM coils pumped the drug out of the complex micelles. The complex micelles functioned as a contractive “nanopump”, which could potentially be applied as a thermosensitive controlled release system.

  相似文献   


16.
Summary: Amphiphilic hyperbranched polyester (H20‐AM) with methacrylate end groups was synthesized based on hyperbranched aliphatic polyester (Boltorn™ H20). Narrow‐dispersed crosslinkable vesicles were obtained by dissolving H20‐AM in water, and characterized by laser light scattering and TEM. The hollow structural vesicle is composed of around 350 H20‐AM molecules, having a radius of around 40 nm and of 1.9 × 106 g · mL−1. The vesicles were fixed by crosslinking of methacrylate groups to form shape‐persistent structures.

TEM images of the crosslinked vesicles at lower magnification.  相似文献   


17.
This paper describes a poly(dimethylsiloxane) (PDMS)‐based microfluidic platform for constructing the phase diagram of poly(N‐isopropyl acrylamide) (PNIPAM) in aqueous solution. The PNIPAM solution was delivered into a nanoliter chamber through the main microchannel. An osmotic pressure difference was established between the chamber and the control microchannel by flowing a high‐concentration salt solution in the control microchannel. Controlled evaporation of water resulted in increasing concentration of PNIPAM. A phase diagram of PNIPAM was built by measuring the cloud points at different concentrations, with a minimum point at ≈40 wt.‐%. The microfluidic platform has the advantages of low sample consumption and rapid heat exchange rates, and allows studying viscous polymer solution.

  相似文献   


18.
Novel π‐conjugated coil–rod–coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self‐assemble into diverse aggregating morphologies including spherical micelles and thin‐layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self‐assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.

  相似文献   


19.
Summary: We report the multiple morphologies and their transformation of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in low‐alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre‐shaped large compound micelles, and to sphere‐shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.

Aggregates of PS‐P4VP formed in butanol by quenching from 110 °C to room temperature.  相似文献   


20.
Well‐defined telechelic‐type aromatic polyamides having a secondary amino group and a phenyl ester moiety at each chain end were prepared by the chain‐growth polycondensation of phenyl 4‐(octylamino)benzoate ( 1 ) with initiator 2 (Ntert‐butoxycarbonylated 1 ), followed by deprotection of the N‐protecting group of the initiator unit. This polycondensation was applied to the synthesis of well‐defined di‐ and triblock copolymers of aromatic polyamides and poly(tetrahydrofuran) (poly(THF)) by the reaction of the terminal secondary amino group of the polyamide with the living cationic propagating group of poly(THF).

Block copolymers of polyamide and poly(tetrahydrofuran).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号