首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, the electromechanical properties of silver‐in‐epoxy conductive adhesives with the polyaniline (PANI) micron particles as cofillers have been investigated. PANI is a conductive polymer and has a moderate conductivity in between those of silver and epoxy. It was found that PANI can be used to tailor both the adhesive's electrical contact resistance and its relaxation behavior; however, the effects of adding PANI were complex. The addition of small amount of PANI (2 wt %) dramatically increased the contact resistance; it might block the electrical contacts among silver flakes and was not able to form a continuous path among themselves. The addition of more PANI showed a moderate increase in contact resistance, which increased with the weight fraction of PANI from 6 to 15 wt %. Interdependent behavior of compressive strain and relaxation in electrical contact resistance is characterized to evaluate the origin of this relaxation. The addition of PANI made the relaxation in electrical contact resistance more sensitive to the compressive strain and the electromechanical coupling to deviate from the linear relationship. These research findings provide insights into the way to use PANI to tailor the electromechanical properties of the adhesive bonds or joints in the development of advanced functional devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 1448–1455  相似文献   

2.
Stimuli‐directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo‐TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the transcis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated.  相似文献   

3.
This article evaluates the influence of temperature on the sorption of gases in two isomers of polynorbornene. The subject polymers were stereoisomers with nearly identical bulk density and total free volume. Because of differences in the mobility of the polymer backbone, the isomers packed differently resulting in differences in the average free‐volume element size within the matrix. The influence of these differences on free‐volume element size was characterized by the heat of sorption of gases in the matrix. The most pronounced differences were observed in the isosteric heats of sorption of condensable carbon dioxide and methane in the polymer isomers. This analysis suggests that the relative space available for sorption into free‐volume elements is higher in the methyl II isomer relative to methyl III. These conclusions support the physical characterizations reported in Part I of this series suggesting that the methyl II isomer has larger average free‐volume elements but fewer of them than the methyl III isomer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1939–1946, 2003  相似文献   

4.
A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 16–24  相似文献   

5.
This article describes a rhodopsin‐inspired photosensitive polymer whose light‐tunable acid sensitivity can be widely modulated simply by adjusting the position of a single methoxy substituent in the aromatic rings of cinnamyl groups. The well‐defined poly(5‐ethyl‐5‐methacryloyloxymethyl‐2‐(p‐methoxystyryl)‐[1,3]dioxane) (PEMpMSD) and poly(5‐ethyl‐5‐methacryloyloxymethyl‐2‐(o‐methoxystyryl)‐[1,3]dioxane) (PEMoMSD) as well as poly(5‐ethyl‐5‐methacryloyloxymethyl‐2‐styryl‐[1,3]dioxane) were synthesized via reversible addition‐fragmentation chain transfer (RAFT) process. The results demonstrated that the para‐methoxy substitution of EMpMSD monomer led to the more shortened initialization period and rapid chain propagation of RAFT process than 5‐ethyl‐5‐methacryloyloxymethyl‐2‐styryl‐[1,3]dioxane monomer under mild visible light radiation at 25 °C. The ortho‐methoxy substitution of PEMoMSD led to high degree of photoinduced Z‐isomerization over 80%. Moreover, the para‐methoxy substitution of PEMpMSD led to the rapid hydrolysis of the cyclic acetal linkages in ambient acid media, while the ortho‐methoxy substitution of PEMoMSD slowed down this hydrolysis. This hydrolysis slowed down on Z‐isomerization particularly in PEMoMSD. These effects widely broadened the tunability of the light‐modulated acid sensitivity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A series of random copolysiloxanes (PCDMS) containing various amount of γ‐cyanopropyl groups are prepared by a new method under mild conditions. Structures of the synthesized polymers are fully characterized by FTIR, 1H NMR, 29Si NMR, and GPC. Rheological properties of PCDMS are tested by cone and plate rheometer, and thermal properties by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Damping properties as well as fuel resistance of the cured PCDMS elastomers are also tested. The correlation between chemical structure, content of cyanopropyl group and properties are discussed. With the increasing amount of polar cyanopropyl group introduced, glass transition temperatures (Tg) of the synthesized PCDMS gradually increases from ?121 to ?65 °C, residual weight increases from 0 to 36% at 800°C, loss factor reaches as high as 1.74, mass increase under fuel immersion for 14 days can be as low as 3.6%. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1408–1421  相似文献   

7.
A novel coordination polymer {[Cd(BDAC)]2 · H2O}n ( 1 ) [HBDAC = (1′H‐[2, 2′]biimidazoly‐1‐yl)‐acetic acid] was synthesized under hydrothermal conditions and characterized by elemental analysis and single‐crystal X‐ray diffraction. Complex 1 crystallizes in the acentric orthorhombic space group Ccc2. The Cd1 atoms and BDAC2– ligands construct [Cd1(BDAC)] rhomboid grid (4, 4)‐topology layer motifs, whereas the Cd2 atoms and BDAC2– ligands form [Cd2(BDAC)] 1D coordination polymer ribbons. Furthermore, adjacent lay motifs are linked into 3D net structures by 1D coordination polymer ribbons with 4‐connected 3D trinodal {4282102}{4462}{43628}2 topology. The measurement of electric hysteresis loops indicated that complex 1 displays a ferroelectric characteristic.  相似文献   

8.
Synthetic strategies for the preparation of a new family of vinyl monomers, 4‐vinyl‐1,2,3‐triazoles, have been developed. These monomers are noteworthy as they combine the stability and aromaticity of styrenics with the polarity of vinylpyridines and the structural versatility of acrylate/methacrylate derivatives. To enable the wide adoption of these unique monomers, new methodologies for their synthesis have been elaborated which rely on Cu‐catalyzed azide/acetylene cycloaddition reactions—“click chemistry”—as the key step, with the vinyl substituent being formed by either elimination or Wittig‐type reactions. In addition, one‐pot “click” reactions have been developed from alkyl halides, which allow for monomer synthesis without isolation of the intermediate organic azides. The high yield and facile nature of these procedures has allowed a library of new monomers including the parent compound, 1‐H‐4‐vinyl‐1,2,3‐triazole, to be prepared on large scales. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2897–2912, 2008  相似文献   

9.
The kinetics of the dibutyltin dilaurate (DBTDL)‐catalyzed urethane formation reactions of cyclohexyl isocyanate (CHI) with model monofunctional fluorinated alcohols and fluoropolyether diol Z‐DOL H‐1000 of various molecular weights (100–1084 g mol?1) in different solvents were studied. IR spectroscopy and chemical titration methods were used for measuring the rate of the total NCO disappearance at 30–60 °C. The effects of the reagents and DBTDL catalyst concentrations, the solvent and hydroxyl‐containing compound nature, and the temperature on the reaction rate and mechanism were investigated. Depending on the initial reagent concentration and solvent, the reactions could be well described by zero‐order, first‐order, second‐order, or more complex equations. The reaction mechanism, including the formation of intermediate ternary or binary complexes of reagents with the tin catalyst, could vary with the concentration and solvent and even during the reaction. The results were treated with a rate expression analogous to those used for enzymatic reactions. Under the explored conditions, the rate of the uncatalyzed reaction of fluorinated alcohols with CHI was negligible. Moreover, there was no allophanate formation, nor were there other side reactions, catalysis by urethane in the absence of DBTDL, or a synergetic effect in the presence of the tin catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3771–3795, 2002  相似文献   

10.
The structure evolution of the oriented layer (skin) and unoriented layer (core) from injection‐molded isotactic polypropylene samples upon uniaxial drawing is probed by in situ synchrotron X‐ray scattering. The X‐ray data analysis approach, called “halo method”, is used to semiquantitatively identify the transformation process of crystal phase upon uniaxial drawing. The results verify the validation of the stress‐induced crystal fragmentation and recrystallization process in the deformation of the injection‐molded samples under different temperatures. Furthermore, the end of strain softening region in the engineering stress‐strain curves explicitly corresponds to the transition point from the stress‐induced crystal fragmentation to recrystallization process. Basically, the skin and core layers of the injection‐molded parts share the similar deformation mechanism as aforementioned. The stretching temperature which dramatically affects the relative strength between the entanglement‐induced tie chains and the adjacent crystalline lamellae determines the crystal structural evolution upon drawing. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1618–1631  相似文献   

11.
Solid‐state fluorescence sensing is one of the most appealing detection techniques because of its simplicity and convenience in practical operation. Herein, we report the development of a red‐emitting carbon dots (RCDs)‐based material as a solid‐state fluorescence sensor for the selective probing of gaseous ammonia. The RCDs were prepared by a low‐cost, one‐step carbonization method using sugar cane bagasse as the carbon precursor. The pristine RCDs were then directly coated on polyvinylidene fluoride membrane to produce a new fluorescence sensor capable of selectively distinguishing toxic gaseous ammonia from other analyte vapors through sensitive fluorescence quenching with a low detection limit. More importantly, the interfacial response mechanism occurring on the surface of the RCDs has been studied by X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, and Raman measurements. The results indicate that fluorescence quenching in the RCDs might result from ammonia‐induced Michael addition through insertion of N into the C?C group and deprotonation of the carboxyl group. To the best of our knowledge, this is the first report that provides clear insight into the mechanism of surface chemistry on CDs in the solid state.  相似文献   

12.
Model alkali‐soluble rheology modifiers were synthesized through the reversible addition–fragmentation chain transfer polymerization of methyl methacrylate, methacrylic acid, and three different associative macromonomers containing 20, 50, and 100 ethylene oxide spacer units, respectively. The synthesized polymers showed well‐controlled molar masses and narrow molar mass distributions. The rheological properties of the model alkali‐soluble rheology modifiers were measured in alkali solutions and in the presence of a well‐characterized core–shell emulsion. The steady‐shear viscosity data for the emulsion solutions, thickened with the associative rheology modifiers, were described by the Carreau model. The rheology modifiers containing the macromonomers with the longest ethylene oxide spacer units produced the highest viscosity in the latex systems but the lowest viscosity in alkali solutions. The highest viscosities in alkali solutions were obtained for the rheology modifiers containing macromonomers with 50 ethylene oxide spacer units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2502–2512, 2004  相似文献   

13.
The reaction of the bis‐chlorophosphines 1 a – 1 d with bis(2‐chloroethyl)amine hydrochloride in the presence of triethylamine and with various trimethylsilylamines led to a new class of bis‐phosphorus ligands 2 a – 2 c and 3 a – 3 g . 31P‐NMR studies suggested that the bis‐phosphorus ligands undergo rotation reactions about the alkyl bridge in polar solvents. Compounds 2 a – 2 c showed initially only one sharp singlet each in their 31P‐NMR spectra. After a few days at room temperature, two signals were observed. Similar results were observed for 3 a – 3 g . In the solid state, the two phosphorus atoms in 2 c are not equivalent, as was confirmed by the observation of two signals in the solid state 31P‐NMR spectrum. Oxidation reactions of 2 a – 2 c by the hydrogen peroxide‐urea 1 : 1 adduct (NH2)2C(:O) · H2O2 led to the formation of the corresponding phosphoryl compounds 4 a – 4 c . Reaction of 2 a and 3 a with Pt[COD]Cl2 (COD = 1.5‐Cyclooctadiene) furnished the complexes 5 and 6 . The NMR spectra suggested that the two chlorine atoms are in cis position. X‐ray structure analyses were conducted for 2 a , which exhibits twofold symmetry; 2 c , which is linked into dimers by hydrogen bonds C–H…O; and 6 , confirming the cis configuration.  相似文献   

14.
The gas permeation properties of polyarylates were tuned by varying nature and site of substituents present on both of its monomers, viz., bisphenol and dicarboxylic acid. The phenyl rings of hexafluorobisphenol‐A were substituted in asymmetric manner by polar bromine to obtain dibromohexafluorobisphenol‐A. This bisphenol was polymerized with equimolar mixture of iso‐ and terephthalic acid (base case), bromo‐ and nitroterephthalic acid (polar group substituted acids), 4,4′‐hexafluoroisopropylidene bis(benzoic acid), and t‐butyl isophthalic acid (bulky group containing acids). Physical properties and gas permeation properties of these polyarylates were investigated to assess combined effects of asymmetric nature of bisphenol substitution, polar nature of substituent bromine, hexafluoroisopropylidene group present at the bridge position of bisphenol, and substituent present on the acid moiety. The combination of these substituent types led these polyarylates to lie near Robeson upper bound. The gas sorption analysis and estimation of diffusivity in these polyarylates shed a light on observed variations in gas permeation properties by attempted structural variations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3156–3168, 2007  相似文献   

15.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

16.
This article reported a novel technology, solid state shear milling (S3M), to prepare poly(ethylene terephthalate)/Na+‐montmorillonite nanocomposites using the pristine Na+‐MMT without organic modification so as to avoid the problem that the organic modifiers, used for MMT treatment will decompose at high processing temperature of PET, and the structure and properties of the obtained samples were investigated. XRD and TEM analyses showed that Na+‐MMT layers were partially delaminated and intercalated, and uniformly dispersed in the PET matrix when suffering from the strong three dimensional shearing forces of pan‐milling. DSC analysis showed that Na+‐MMT serves as a nucleating agent, increasing the crystallization rate as well as the crystallization temperature of PET. The properties such as thermal stability and tensile strength of the PET/Na+‐MMT nanocomposites prepared by S3M got remarkably improved. Solid state shear milling (S3M) method was a simple and efficient method to get polymer/Na+‐MMT nanocomposites with pretty good performances without organic modification of pristine Na+‐MMT. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 807–817, 2008  相似文献   

17.
The influence of solid‐state microstructure on the optoelectronic properties of conjugated polymers is widely recognized, but still poorly understood. Here, we show how the microstructure of conjugated polymers controls the yield and decay dynamics of long‐lived photogenerated charge in neat films. Poly(3‐hexylthiophene) was used as a model system. By varying the molecular weight, we drive a transition in the polymer microstructure from nonentangled, chain‐extended, paraffinic‐like to entangled, semicrystalline (MW = 5.5–347 kg/mol). The molecular weight range at which this transition occurs (MW = 40–50 kg/mol) can be deduced from the drastic change in elongation at break found in tensile tests. Linear absorption measurements of free‐exciton bandwidth and time‐resolved microwave conductivity (TRMC) measurements of transient photoconductance track the concomitant evolution in optoelectronic properties of the polymer as a function of MW. TRMC measurements show that the yield of free photogenerated charge increases with increasing molecular weight in the paraffinic regime and saturates at the transition into the entangled, semicrystalline regime. This transition in carrier yield correlates with a sharp transition in free‐exciton bandwidth and decay dynamics at a similar molecular weight. We propose that the transition in microstructure controls the yield and decay dynamics of long‐lived photogenerated charge. The evolution of a semicrystalline structure with well‐defined interfaces between amorphous and crystalline domains of the polymer is required for spatial separation of the electron and hole. This structural characteristic not only largely controls the yield of free charges, but also serves as a recombination center, where mobile holes encounter a bath of dark electrons resident in the amorphous phase and recombine with quasi first‐order kinetics. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
The present research is based on the use of a recently developed comprehensive two‐dimensional gas chromatography thermal modulator, which is defined as solid‐state modulator. The transfer device was installed on top of a single gas chromatography oven, while benchtop low‐resolution time‐of‐flight mass spectrometry was used to monitor the compounds exiting the second analytical column. The solid‐state modulator was first described by Luong et al. in 2016, and it is a moving modulator that does not require heating and cooling gases to generate comprehensive two‐dimensional gas chromatography data. The accumulation and remobilization steps occur on a trapping capillary, this being subjected to thermoelectric cooling and micathermic heating. In this study, the effects of the gas linear velocity on the modulation performance were evaluated by using two different uncoated trapping capillaries, viz., 0.8 m × 0.25 mm id and 0.8 m × 0.20 mm id. Solid‐state modulator applications were carried out on a standard solution containing n‐alkanes (C9, C10, C12), and on a sample of diesel fuel. The results indicated that the type of trapping capillary and gas velocity have a profound effect on modulation efficiency.  相似文献   

19.
A review is given of the strategies used to dope inorganic solids and the consequences for properties such as ionic and electronic conductivity. Doping mechanisms involve either substitution of foreign ions onto lattice sites, creation of vacancies on either cation or anion sites, or population of normally empty interstitial sites by either anions or cations. Mechanisms for charge compensation associated with aliovalent doping are reviewed and examples are given in the fields of solid state ionics and high-temperature superconductivity. The strategies used for targeting materials with new properties are reviewed, including a surprising number of cases where startling new properties are encountered in well-known materials. Specific examples discussed include MgB2 superconductor, Na beta-alumina sodium ion conductor, Ca12Al14O33 oxide ion conductor, LiCoMnO4 lithium battery cathode, doped Li4SiO4 tunable lithium ion conductor, and La-doped BaTiO3 ferroelectric, which can be either semiconducting or insulating. Examples are also given of a curious observation that extraordinary properties are often encountered in materials that are on the edge of stability, either structurally or compositionally or at the crossover between different property types.  相似文献   

20.
High‐refractive‐index polyamides (PAs) are developed by incorporation of sulfide‐ or sulfoxide linkages and chlorine substituents. The PAs are synthesized through the polycondensation of two novel diamine monomers, 2,2′‐sulfide‐bis(4‐chloro‐1‐(4‐aminophenoxy) phenyl ether (3a) and 2,2′‐sulfoxide‐bis(4‐chloro‐1‐(4‐aminophenoxy) phenyl ether (3b), with various aromatic diacids (a–e). The ortho‐sulfide or sulfoxide units, pendant chlorine groups, and flexible ether linkages in the diamine monomers endowed the obtained PAs with excellent solubilities in organic solvents. The resulting PAs showed high thermal stability, with 10% weight loss temperatures exceeding 415 °C under nitrogen and 399 °C in air atmosphere. The combination of chlorine substituents, sulfide or sulfoxide linkages, and ortho‐catenated structures provided polymers with high transparency along with high refractive index values of up to 1.7401 at 632.8 nm and low birefringences (<0.0075). The structure–property relationships of the analogous PAs containing sulfide or sulfoxide linkages were also studied in detail by comparing the results. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2867–2877  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号