首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary: The complexation between polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles and poly(ethylene glycol)‐block‐poly(4‐vinyl pyridine) (PEG‐b‐P4VP) is studied, and a facile strategy is proposed to prepare core‐shell‐corona micellar complexes. Micellization of PS‐b‐PAA in ethanol forms spherical core‐shell micelles with PS block as core and PAA block as shell. When PEG‐b‐P4VP is added into the core‐shell micellar solution, the P4VP block is absorbed into the core‐shell micelles to form spherical core‐shell‐corona micellar complexes with the PS block as core, the combined PAA/P4VP blocks as shell and the PEG block as corona. A model is suggested to characterize the core‐shell‐corona micellar complexes.

Schematic formation of core‐shell‐corona (CSC) micellar complexes by adsorption of PEG‐b‐P4VP into core‐shell PS‐b‐PAA micelles.  相似文献   


3.
Uniform nanodonuts: Stable toroidal micelles that have a highly uniform size and shape spontaneously self‐assemble from a selective THF/ethanol solvent mixture (see 3D AFM image). The donut‐shaped micelles can be used as a template to grow gold nanoparticles, which form along the ring surface.

  相似文献   


4.
Gold nanoparticles are formed to cover the surface of sulfonated‐polystyrene (PS) beads by the in‐situ ion‐exchange and chemical reduction of a stable cationic gold ligand, which makes it different from the physical adsorption or multiple electroless metallization methods. PS beads are synthesized by dispersion polymerization with a diameter of 2.7 µm, and their surface is modified by introducing sulfonic acid groups (SO) to give an ion exchange capacity of up to 2.25 mequiv. · g−1, which provides 1.289 × 1010 SO per bead. Subsequently, the anionic surface of the PS beads is incorporated with a cationic gold ligand, dichlorophenanthrolinegold(III) chloride ([AuCl2(phen)]Cl), through an electrostatic interaction in the liquid phase to give gold nanoparticles (ca. 1–4 nm in diameter) formed on the PS surface. Assuming that approximately three SO groups interact with one [AuCl2(phen)]+ ion in the ion‐exchange process, the gold coverage on a PS bead is estimated as 12.0 wt.‐%, which compares well with the 16.8 wt.‐% of gold loading measured by inductively coupled plasma–mass spectrometry. Because of the adjustable IEC values of the polymer surface and the in‐situ metallization of Au in the presence of S atoms, both of which are of a soft nature, the developed methodology could provide a simple and controllable route to synthesize a robust metal coating on the polymer bead surface.

  相似文献   


5.
Summary: We studied changes in the mechanical properties of polyelectrolyte‐multilayer capsules induced by YF3‐nanoparticle formation inside the layers. Using direct‐deformation measurements by colloidal probe atomic force microscopy (AFM), we found that the nanoparticle formation increases the capsule stiffness by one order of magnitude. At the same time, we observed that buckling instabilities of the capsules are suppressed after the nanoparticle modification.

RICM picture of an initial PAH/PSS capsule under high deformation.  相似文献   


6.
Structured hybrid nanoparticles were synthesized via surface‐initiated atom transfer radical polymerization of MMA from ordered mesoporous silica (OMS) nanoparticles with various morphologies. The design of the OMS particles was adjusted to target either spherical core‐shell or cylindrical morphologies with a mean diameter below 400 nm. The polymer growth via ATRP from the silica surface was well‐controlled as demonstrated by the macromolecular characteristics of the grafted chains. Original hybrid multilayered nanoparticles composed of either a dense silica core or hollow core; an inner OMS shell showing radial orientation of the mesopores and an outer PMMA shell with controlled thickness were successfully prepared.

  相似文献   


7.
舒建华  仇伟  郑少琴 《化学进展》2009,21(5):1015-1022
由于聚苯胺/纳米金复合材料不仅同时具有纳米金和聚苯胺原有的特异性能,而且两组分之间还存在着相互协同作用,极大地提升了聚苯胺基体的性能,从而表现出突出的固有电导性、优异的反应催化性和特殊的电荷传递性,因此成为近年来的研究热点。本文综述了聚苯胺/纳米金复合材料的最新研究进展:归纳了聚苯胺/纳米金复合材料的制备方法和各种方法的机理,简单介绍了复合材料在生物医学、传感器和微电子装置等方面的应用,展望了今后复合材料研究的方向。  相似文献   

8.
卜扬  杨清  孟琦  胡赢  黄杉生 《化学学报》2010,68(7):672-678
利用新型材料金纳米空球, 通过层层修饰的技术, 分别将壳聚糖、空壳纳米金、L-半胱氨酸、细胞色素c以及ssDNA探针修饰到玻碳电极表面, 制备了一种新型的DNA生物传感器. 以紫外及透射电子显微镜(TEM)表征了空壳纳米金, 以循环伏安法、阻抗谱图等电化学方法研究了传感器的特性, 通过原子力显微镜方法观察了该DNA生物传感器不同层之间的形态差异. 结果表明, 该修饰电极所吸附的ssDNA探针为1.672×10―10 mol•cm-2. 在指示剂柔红霉素的帮助下, DNA探针可与互补的DNA进行杂交, 借此以微分脉冲伏安法测定DNA.  相似文献   

9.
This study reports the synthesis of poly(ethylene glycol)methyl ether‐block‐poly(glycidyl methacrylate) (MPEG‐b‐PGMA) diblock, and poly(ethylene glycol)methyl ether‐block‐poly(glycidyl methacrylate)‐block‐poly(methyl methacrylate) (MPEG‐b‐PGMA‐b‐PMMA) triblock copolymers via atom transfer radical polymerization and their self‐assembly behaviors in aqueous media by using acetone as cosolvent. These block copolymers formed near monodisperse core–shell micelles having cross‐linkable cores. Two types of cross‐linked micelles, namely spherical MPEG‐b‐PGMA core cross‐linked (CCL) micelles and MPEG‐b‐PGMA‐b‐PMMA interlayer cross‐linked (ILCL) micelles, were also successfully prepared from these block copolymers by using various bifunctional cross‐linkers such as hexamethylenediamine (HMDA), ethylenediamine (EDA), and 2‐aminoethanethiol (AET). Cross‐linking was successfully carried out via ring‐opening reactions of epoxy residues of hydrophobic‐cores with primary amine or thiol groups of bifunctional cross‐linkers. Finally, these cross‐linked micelles were successfully used as nanoreactors in the synthesis of gold nanoparticles (AuNPs) in aqueous media. Both CCL and ILCL micelles were found to be good stabilizers for AuNPs in aqueous media. Both CCL‐ and ILCL‐stabilized AuNP dispersions were stable for a long time without any size changes and flocculation at room temperature. These cross‐linked stabilized AuNPs exhibited good catalytic activities in the reduction of p‐nitrophenol. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 514–526.  相似文献   

10.
We report here on the formation of hybrid compound block copolymer micelles encapsulating gold nanoparticles, utilizing a direct and general preparation method. The giant hybrid compound micelles are structured with micelles of PS‐b‐P2VP with gold nanoparticles in their P2VP core and PI‐b‐PS chains as the outer part of the compound micelles. The gold nanoparticles were produced using gold ion‐loaded PS‐b‐P2VP micelles as a nanoreactor, in a PS selective solvent (toluene), by the subsequent reduction of gold ions. The synthesis of the gold nanoparticles was monitored by UV‐vis spectroscopy. The gold containing micelles were then encapsulated in larger micelles of PI‐b‐PS copolymer, by successive utilization of toluene and heptane with the intermediate evaporation of toluene. The nanoassembly of the compound materials comprised a PI corona and a PS compound core, with P2VP/Au0 domains, and was characterized using UV‐vis spectroscopy, dynamic light scattering and transmission electron microscopy.

  相似文献   


11.
Pure toroidal micelles of highly uniform shape and size are presented by T. Chang et al. in their Communication on page 4594 ff. The donut‐shaped micelles are prepared by spontaneous self‐assembly of a polyisoprene‐block‐poly(2‐vinylpyridine) copolymer, and are stable enough to act as a template for the growth of gold nanoparticles along the ring surface.

  相似文献   


12.
By simply blending two diblock copolymers with the same chemistry but with different compositions one is able to create well‐defined larger soft ­nanoparticles as well as bimodal soft nanoparticles. Specifically, blending two diblock copolymers in a solvent good for both blocks followed by a gradual introduction of a non‐solvent results in a mixed micelle, larger than their pure block‐copolymer‐forming micelles. The formation of well‐defined larger micelle is due to the balance between the ability of the mixed micelles to assemble or merge in comparison to their pure diblock copolymer micelles. Evidently, the blending ratio, the mixing protocol, and non‐solvent addition rate are crucial to achieving well‐defined larger or bimodal micelles.

  相似文献   


13.
A diblock copolymer system constituting both achiral and chiral blocks, polystyrene‐block‐poly(L ‐lactide) (PS‐PLLA), was designed for the examination of chiral effects on the self‐assembly of block copolymers (BCPs). A unique phase with three‐dimensional hexagonally packed PLLA helices in PS matrix, a helical phase (H*), can be obtained from the self‐assembly of PS‐rich PS‐PLLA with volume fraction of PLLA f = 0.34, whereas no such phase was found in racemic polystyrene‐block‐poly(D .L ‐lactide) (PS‐PLA) BCPs. Moreover, various interesting crystalline PS‐PLLA nanostructures can be obtained by controlling the crystallization temperature of PLLA (Tc,PLLA), leading to the formation of crystalline helices (PLLA crystallization directed by helical confined microdomain) and crystalline cylinders (phase transformation of helical nanostructure dictated by crystallization) when Tc,PLLA < Tg,PS (the glass transition temperature of PS) and Tc,PLLATg,PS, respectively. As a result, a spring‐like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation (i.e., stretching) of helices and to result in crystalline cylinders. For PS‐PLLA with PLLA‐rich fraction (f = 0.65), another unique phase, a hexagonally packed core‐shell cylinder phase with helical sense (CS*), in which the PS microdomains appear as shells and PLLA microdomains appear as matrix and cores, can be found in the self‐assembly of PLLA‐rich PS‐PLLA BCPs. The formation of those novel phases: helix and core‐shell cylinder is attributed to the chiral effect on the self‐assembly of BCPs, so we named this PS‐PLLA BCP as chiral BCP (BCP*). For potential applications of those materials, the spring‐like behavior with thermal reversibility might provide a method for the design of switchable nanodevices, such as nanoscale actuators. In addition, the PLLA blocks can be hydrolyzed. After hydrolysis, helical nanoporous PS bulk and PS tubular texture can be obtained and used as templates for the formation of nanocomposites.

  相似文献   


14.
合成了一系列Au/SiO2核壳纳米粒子,并详细研究了Au纳米壳层的生长过程。发现在金纳米壳层形成的过程中存在着2个竞争反应。利用这一发现,可将金纳米壳层的吸收峰从524nm连续调谐至980nm处。恩度是一种临床抗癌药物,我们首次将其生物复合于吸收峰位于808nm的Au/SiO2壳层表面,得到Au/SiO2-Endo,通过FTIR测试证明该生物复合成功。将恩度特殊的饿杀肿瘤特性以及对肿瘤具有特异识别能力,与Au/SiO2纳米壳层结构的光学可调谐特性以及良好的光热转换能力复合于一体,我们期望得到一种治疗肿瘤效果更强的新型药物。  相似文献   

15.
Au nanoparticles (NPs) and polymer composite particles with phase‐separation structures were prepared based on phase separation structures. Au NPs were successfully synthesized in amphiphilic block‐copolymer micelles, and then composite particles were formed by a simple solvent evaporation process from Au NPs and polymer solution. The phase separated structures (Janus and Core‐shell) were controlled by changing the combination of polymers having differing hydrophobicity.

  相似文献   


16.
17.
以没食子酸为还原剂和稳定剂,用种子生长法制备出粒径均匀、单分散性和稳定性好、近球形的Ag/Au 核壳纳米粒子.高分辨透射电镜(HRTEM)与 X-射线能量色散光谱仪(EDX)测试表明,在Ag/Au摩尔比为1:1.6时,Au已完全包裹在Ag纳米粒子表面时,平均粒径为25 nm.以此摩尔比制备的Ag/Au核壳纳米粒子为探针...  相似文献   

18.
Herein, we report the effect of gold nanoparticles (GNPs) in enhancing lipase activity in reverse micelles of cetyltrimethylammonium bromide (CTAB)/water/isooctane/n‐hexanol. The size and concentration of the nanoparticles were varied and their specific roles were assessed in detail. An overall enhancement of activity was observed in the GNP‐doped CTAB reverse micelles. The improvement in activity becomes more prominent with increasing concentration and size of the GNPs (0–52 μM and ca. 3–30 nm, respectively). The observed highest lipase activity (k2=1070±12 cm3 g?1 s?1) in GNP‐doped CTAB reverse micelles ([GNP]: 52 μm, ca. 20 nm) is 2.5‐fold higher than in CTAB reverse micelles without GNPs. Improvement in the lipase activity is only specific to the GNP‐doped reverse micellar media, whereas GNP deactivates and structurally deforms the enzyme in aqueous media. The reason for this activation is probably due to the formation of larger‐sized reverse micelles in which the GNP acts as a polar core and the surfactants aggregate around the nanoparticle (‘GNP pool’) instead of only water. Lipase at the augmented interface of the GNP‐doped reverse micelle showed improved activity because of enhancement in both the substrate and enzyme concentrations and increased flexibility in the lipase conformation. The extent of the activation is greater in the case of the larger‐sized GNPs. A correlation has been established between the activity of lipase and its secondary structure by using circular dichroism and FTIR spectroscopic analysis. The generalized influence of GNP is verified in the reverse micelles of another surfactant, namely, cetyltripropylammonium bromide (CTPAB). TEM, dynamic light scattering (DLS), and UV/Vis spectroscopic analysis were utilized to characterize the GNPs and the organized aggregates. For the first time, CTAB‐based reverse micelles have been found to be an excellent host for lipase simply by doping with appropriately sized GNPs.  相似文献   

19.
The general approach involving the organization of polymers into micellar assemblies followed by stabilization through covalent intramicellar crosslinking of the assemblies has emerged as a powerful method for the production of well‐defined nanostructured materials, having an amphiphilic core‐shell morphology. When the covalent crosslinks are limited to the chain segments that compose the polymer micelle shell, then shell crosslinked knedel‐like (SCK) nanostructures result. The shell composition dictates the interactions of the SCKs with external agents, forms a barrier layer over the core domain, and provides robust character to the nanoparticle. Because of the stability that the crosslinked shell provides, the core domain can be of dramatically different compositions and properties—glassy, fluidlike, and crystalline polymer chains have been employed for the core material and the effects that each contributes to the overall nanostructure properties have been examined. Most notably, the shell crosslinks allow for complete removal of the core to generate hollow (solvent‐filled) nanoscale cagelike structures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1397–1407, 2000  相似文献   

20.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号