共查询到20条相似文献,搜索用时 15 毫秒
1.
Makoto Watanabe 《Macromolecular rapid communications》2005,26(1):34-39
Summary: The azaferrocenyliminonickel dibromide complexes 1 bearing a pentaphenylcyclopentadienyl group and a wide range of N‐aryl groups were synthesized and examined as catalysts for ethylene polymerization. Both the ortho‐ (R1) and para‐substituents (R2) of the N‐aryl groups in 1 were found to strongly influence both the polymerization activity and the properties of the obtained polyethylenes. The effect of changing the polymerization conditions, such as temperature, ethylene pressure, and cocatalyst, was also examined.
2.
Guido Pampaloni Yogesh Patil Anna Maria Raspolli Galletti Stefano Zacchini 《Journal of polymer science. Part A, Polymer chemistry》2011,49(7):1664-1670
The dinuclear [NbCln(OR)(5‐n)]2 (n = 4, R = Et, 1 ; n = 4, R = CH2Ph, 2 ; n = 3, R = Et, 3 ; n = 2, R = Et, 4 ; n = 2, R = , 5 ), and [Nb(OEt)5]2, 6 , and the mononuclear niobium compounds NbCl4[κ2? OCH2CH(R′)OR] (R = Me, R′ = H, 7 ; R = Et, R′ = H, 8 ; R = CH2Cl, R′ = H, 9 ; R = CH2CH2OMe, R′ = H, 10 ; R = R′ = Me, 11 ), NbBr4[κ2? OCH2CH2OMe], 12 , and NbCl3(κ2? OCH2CH2OMe)(κ1? OCH2CH2OMe), 13 , were tested in ethylene polymerization. Optimized reaction conditions included the use of D‐MAO as co‐catalyst and chlorobenzene as solvent at 50 °C. Complex 7 , whose X‐Ray structure is described here for the first time, exhibited the highest activity ever reported for a niobium catalyst in alkene polymerization [151 kgpolymer × molNb?1 × h?1 × bar?1]. Compounds 1 , 3‐5 , 8 , 13 showed activities similar to that of 7 . Linear polyethylenes (characterized by FT‐IR, NMR, GPC, and DSC analyses) with a broad polydispersivity were obtained. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
3.
Lisa Saunders Baugh Joseph A. Sissano Smita Kacker Enock Berluche Robert T. Stibrany Donald N. Schulz Steven P. Rucker 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1817-1840
Bisbenzimidazole copper dichloride complexes (CuBBIMs), when activated with methylaluminoxane, catalyze the random copolymerization of ethylene with acrylates to produce highly linear functional copolymers. To probe the sensitivity of the copolymerization to the catalyst structure, a series of CuBBIM catalysts with various steric, electronic, and geometric ligand characteristics was prepared, including CuBBIMs having benzimidazole ring substituents and ligand backbones of various lengths. Four different acrylates were also evaluated as comonomers (t‐butyl acrylate, methyl acrylate, t‐butyl methacrylate, and methyl methacrylate). Although no obvious ligand‐based influences on copolymerization were identified, the structure of the acrylate comonomer was found to exert significant effects. Copolymers prepared with t‐butyl methacrylate comonomer exhibited the highest ethylene contents (31–63%), whereas those prepared with methyl acrylate contained only minor amounts of ethylene (<15%). Copolymerizations carried out at lowered acrylate feed levels generally had increased ethylene contents but showed smaller yields, lowered molecular weights, and increased branching. Unusual ketoester structures were also observed in the methyl acrylate and methyl methacrylate containing copolymers, suggesting that the acrylate ester group size may be an important controlling factor for copolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1817–1840, 2006 相似文献
4.
Anna Maria Raspolli Galletti Carlo Carlini Simone Giaiacopi Marco Martinelli Glauco Sbrana 《Journal of polymer science. Part A, Polymer chemistry》2007,45(6):1134-1142
Bis(salicylaldiminate)copper(II) complexes, when activated with methylaluminoxane, catalyzed the homo‐ and copolymerizations of ethylene and methyl methacrylate (MMA). The activity in the MMA homopolymerization was influenced by the electronic and steric characteristics of the Cu(II) precursors as well as the cocatalyst concentration. The same systems revealed modest activity also in the homopolymerization of ethylene, giving a highly linear polyethylene, and in its copolymerization with MMA. These copolymers exhibited a very high content of polar groups (MMA units > 70 mol %) and were characterized by a high molecular weight and polydispersity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1134–1142, 2007 相似文献
5.
Jean‐Christophe Daigle Vincent Dube‐Savoie Ana C. Tavares Jerome P. Claverie 《Journal of polymer science. Part A, Polymer chemistry》2013,51(12):2669-2676
Terpolymers of ethylene, norbornene, and 5‐exo norbornene methyl alcohol are prepared using Pd phosphine sulfonates as catalysts. The pendant hydroxyl groups are then transformed into thioacetate groups. Films cast from the resulting polymers are then oxidized by hydrogen peroxide. This green oxidation method is found to quantitatively transform thioacetate groups into sulfonic acids, leading to the formation of sulfonated hydrocarbon ionomers. These ionomers are thermally stable, exhibit increasing conductivity up to 110 °C, and have a low water uptake, indicating that these materials are potentially interesting candidates for the preparation of fuel cell membranes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2669–2676 相似文献
6.
Nileshkumar Kukalyekar Luigi Balzano Gerrit W. M. Peters Sanjay Rastogi John C. Chadwick 《大分子反应工程》2009,3(8):448-454
Bimodal polyethylenes comprising varying proportions of high‐ and low‐molecular‐weight fractions are synthesized in a single polymerization stage, via the co‐immobilization of a chromium and an iron catalyst on an MgCl2/AlEtn(OEt)3?n support. Changes observed in the viscoelastic response of the polymer melt with increasing content of the high‐molecular‐weight fraction indicate effective mixing in the bimodal blend. In flow, chains in the high‐molecular weight fraction tend to orient and stretch under shear. Due to the longer relaxation time of the high‐molecular‐weight component, X‐ray diffraction and scattering reveal that shear‐induced crystallization takes place at temperatures close to the equilibrium melting point of linear polyethylene. The so‐crystallized high‐molecular‐weight component suppresses the nucleation barrier for further crystallization, leading to the formation of a “shish‐kebab” polymer morphology.
7.
John C. Chadwick Rubin Huang Nileshkumar Kukalyekar Sanjay Rastogi 《Macromolecular Symposia》2007,260(1):154-160
Immobilization of combinations of early- and late-transition metal catalysts on MgCl2 supports has led to significant increases in catalyst activity when a nickel diimine is incorporated into a Fe-, Cr- or Ti-based catalyst system, and to the formation of intimately mixed, bimodal blends of high- and low-molecular weight polyethylene via coimmobilization of Cr and Fe catalysts. 相似文献
8.
Stefan Benson Bridgett Payne Robert M. Waymouth 《Journal of polymer science. Part A, Polymer chemistry》2007,45(16):3637-3647
Two new N‐heterocyclic carbene enolate nickel(II) allyl complexes have been prepared and their activity towards ethylene polymerization was investigated. It was found that in the presence of diethyl zinc, the carbene enolate complex bearing a nitro substituent produces highly linear polyethylene of modest molecular weight and high polydispersity. The influence of the reaction parameters on catalytic activity and the characteristics of the resulting polymer were investigated through systematic variation of the time, temperature, and diethyl zinc concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45:3637–3647, 2007 相似文献
9.
Xiaohui He Yiwang Chen Yongming Liu Shuxian Yu Sanguo Hong Qing Wu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(20):4733-4743
Norbornene polymerizations proceeded in toluene with bis(β‐ketoamino)nickel(II) {Ni[CH3C(O)CHC(NR)CH3]2 [R = phenyl ( 1 ) or naphthyl ( 2 )]} complexes as the catalyst precursors and the organo‐Lewis compound tris(pentafluorophenyl)borane [B(C6F5)3] as a unique cocatalyst. The polymerization conditions, such as the cocatalyst/catalyst ratio (B/Ni), catalyst concentration, monomer/catalyst ratio (norbornene/Ni), polymerization temperature, and polymerization time, were studied in detail. Both bis(β‐ketoamino)nickel(II)/B(C6F5)3 catalytic systems showed noticeably high conversions and activities. The polymerization activities were up to 3.64 × 107 g of polymer/mol of Ni h for complex 1 /(B(C6F5)3 and 3.80 × 107 g of polymer/mol of Ni h for complex 2 /B(C6F5)3, and very high conversions of 90–95% were maintained; both polymerizations provided high‐molecular‐weight polynorbornenes with molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) of 2.5–3.0. The achieved polynorbornenes were confirmed to be vinyl‐addition and atactic polymers through the analysis of Fourier transform infrared, 1H NMR, and 13C NMR spectra, and the thermogravimetric analysis results showed that the polynorbornenes exhibited good thermal stability (decomposition temperature > 410 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4733–4743, 2007 相似文献
10.
Binyuan Liu Chunying Tian Li Zhang Weidong Yan Wenjun Zhang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6243-6251
A series of LZnX zinc/β‐ketoiminato complexes [L = CH3C(OH)?C(CH2CH?CH2)C(CH3)?NAr ( L1 ), CH3C(OH)?C(CH2CH2CN)C(CH3)?NAr ( L2 ), CH3C(OH)?C(CH2C6H5)C(CH3)?NAr ( L3 ), or CH3C(OH)?CHC(CH3)?NAr ( L4 ); Ar = 2,6‐iPr2C6H3; and initiation group X = alcoholate or acetate (for L1 ) or alcoholate (for L2 – L4 )] were synthesized, and their activities toward the copolymerization of carbon dioxide with cyclohexene oxide were determined. The 3‐position substituents on the β‐ketoiminato ligand backbone of the zinc/β‐ketoiminato complexes played an important role not only in the catalytic activity but also in the intrinsic viscosity, chemical composition, and refined microstructure of the resultant copolymers. The order of the catalytic activity of L1 ZnX with different initiation groups (X = OMe, OiPr, or OAc) was L1 Zn (OiPr) > L1 Zn (OMe) > L1 Zn (OAc), being the opposite of the order of the leaving ability of the initiation groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6243–6251, 2006 相似文献
11.
Marco Antnio da Silva Griselda Barrera Galland 《Journal of polymer science. Part A, Polymer chemistry》2008,46(3):947-957
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008 相似文献
12.
Fuping He Yiwang Chen Xiaohui He Muqing Chen Weihua Zhou Qing Wu 《Journal of polymer science. Part A, Polymer chemistry》2009,47(16):3990-4000
Vinyl‐type copolymerization of norbornene (NBE) and 5‐NBE‐2‐yl‐acetate (NBE‐OCOMe) in toluene were investigated using a novel homogeneous catalyst system based on bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. The copolymerization behavior as well as the copolymerization conditions, such as the levels of B(C6F5)3 and AlEt3, temperature, and monomer feed ratios, which influence on the copolymerization were examined. Without combination of AlEt3, the catalytic bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3 exhibited very high catalyst activity for polymerization of NBE. Combination of AlEt3 in catalyst system resulted in low conversion for polymerization of NBE. For copolymerization of NBE and NBE‐OCOMe, involvement of AlEt3 in catalyst is necessary. Slight addition of NBE‐OCOMe in copolymerization of NBE and NBE‐OCOMe gives rise to significant increase of catalyst activity for catalytic system bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. Nevertheless, excess increase of the NBE‐OCOMe content in the comonomer feed ratios results in decrease of conversion as well as activity of catalyst. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of FTIR, 1H NMR, and 13C NMR spectra. 13C NMR studies further revealed the composition of the copolymer and the incorporation rate was 7.6–54.1 mol % ester units at a content of 30–90 mol % of the NBE‐OCOMe in the monomer feeds ratios. TGA analysis results showed that the copolymer exhibited good thermal stability (Td > 410 °C) and failed to observe the glass transitions temperature over 300 °C. The copolymers are confirmed to be noncrystalline by WAXD analysis results and show good solubility in common organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3990–4000, 2009 相似文献
13.
A novel method for the preparation of supported metallocene/alkylaluminoxane catalysts has been developed. An incipient wetness impregnation of silica at ca. –40°C is performed in one step employing a solution of catalyst and cocatalyst in 1‐hexene. A prepolymerization of this system at ambient temperature yields a catalyst robust towards exposure to air, as demonstrated by a reasonable activity during ethene polymerization. A special feature of the catalyst is a uniform impregnation across the silica particles. 相似文献
14.
Hans R. Kricheldorf Heiko Hachmann‐Thiessen 《Journal of polymer science. Part A, Polymer chemistry》2005,43(15):3268-3277
ε‐Caprolactone and glycolide were copolymerized in bulk either with tin(II) 2‐ethylhexanoate (SnOct2) or with bismuth(III) n‐hexanoate (BiHex3) as initiators and with tetra(ethylene glycol) as a coinitiator. The temperature was varied from 100 to 160 °C. The sequences were characterized with 1H and 13C NMR spectroscopy. Surprisingly, it was found that higher temperatures favored the formation of alternating sequences. Furthermore, the content of alternating dyads was significantly higher when BiHex3 was used instead of SnOct2. An increase in reaction time caused partial randomization of the sequences regardless of the initiator. Size exclusion chromatography measurements in chloroform yielded number‐average molecular weights in agreement with the feed ratios. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3268–3277, 2005 相似文献
15.
Yuushou Nakayama Masaya Tanimoto Takeshi Shiono 《Macromolecular rapid communications》2007,28(5):646-650
A series of pentavalent tantalum and niobium complexes with aryloxy ligands was prepared, and their catalytic behavior for the ROMP of norbornene was studied in the presence of an alkylaluminum cocatalyst. Tantalum complexes 1 – 4 showed very high activity for the ROMP of NBE in combination with iBu3Al to give high‐molecular‐weight polymers. In contrast, the niobium complexes 5 and 6 , as well as NbCl5, exhibited very high activity upon activation with Me3Al to give high‐molecular‐weight polymers.
16.
Mikhail A. Matsko Ludmila G. Echevskaya Vladimir A. Zakharov Marina I. Nikolaeva Tatyana B. Mikenas Marina P. Vanina 《Macromolecular Symposia》2009,282(1):157-166
Summary: Heterogeneity of active centers (AC) of titanium-magnesium catalysts (TMC) and vanadium-magnesium catalyst (VMC) in ethylene-hexene-1 copolymerization has been studied on the base of data of polymer molecular weight distribution (MWD) deconvolution technique and copolymer fractionation onto narrow fractions. It was found that 3 and 4 Flory components (groups of active centers) are required to describe experimental MWD curves of copolymers produced over TMC with different Ti content. In the case of VMC MWD of homopolymer and copolymer are characterized by set of 5 Flory components (5 groups of AC). Different character of inter-relationship between MW and short chain branching (SCB) was found for ethylene-hexene-1 copolymers produced over different catalysts: heterogeneous type in the case of TMC and more uniform for copolymer prepared over VMC. The content of Ti affects on the slope of that profile in copolymers produced over TMC. The results indicated that TMC and VMC are different greatly on the heterogeneity of active centers to the formation of polymers with different molecular weights and to formation of copolymers with different inter-relationship between MW and short chain branching. TMC produces polymers with more narrow MWD but it contains highly heterogeneous centers regarding comonomer reactivity ratios. VMC produces polymers with broad and bimodal MWD but it contains more homogeneous centers regarding comonomer reactivity ratios. 相似文献
17.
Paul‐Gerhard Lassahn Christoph Janiak Jae‐Seung Oh 《Macromolecular rapid communications》2002,23(1):16-20
Nickel(II) and palladium(II) complexes of the general type [MCl2{Ph2P(CH2)nPPh2}] with n = 2, 3 and M = Ni ( 2 , 3 ), Pd ( 4 , 5 ) have been utilized as catalysts for the polymerization reaction of norbornene. It was found that the use of B(C6F5)3/triethylaluminium (TEA) in comparison to methylaluminoxane as an activator towards complexes 2 , 3 and 5 gave comparable polymerization activities, and the system 4 /B(C6F5)3/TEA even led to an extremely high polymerization activity of 107 gpolymer/molmetal· h. 相似文献
18.
Xiaohui He Yueman Liu Lu Chen Yiwang Chen Defu Chen 《Journal of polymer science. Part A, Polymer chemistry》2012,50(22):4695-4704
A serial of late transition metal complexes, which bearing Benzocyclohexane–ketoarylimine ligand and named as Mt(benzocyclohexane–ketoarylimino)2 {Mt(bchkai)2: Mt=Ni or Pd; bchkai=C10H8(O)CN(Ar)CH3; Ar=naphthyl or fluoryl}, have been synthesized and characterized. The molecular structures of the ligands and nickel complex have been confirmed by X‐ray single‐crystal analyses. The nickel complexes exhibited very high activity up to 2.7 × 105 gpolymer/molNi·h and palladium complexes showed high activity up to 2.3 × 105 gpolymer/molPd·h for norbornene (NB) homo‐polymerization with tris(pentafluorophenyl)borane as cocatalyst. The four complexes were effective for copolymerization of NB and 5‐norbornene‐2‐carboxylic acid methyl ester (NB‐COOCH3) in relatively high activities (0.1–2.4 × 105 gpolymer/molMt·h) and produced the addition‐type copolymers with relatively high molecular weights (0.5 × 105–1.2 × 105 g/mol) as well as narrow molecular weight distributions (PDI < 2 for all polymers). Influences of the metals and comonomer feed content on the polymerization activity as well as on the incorporation rates (20.9–42.6%) were investigated. The achieved NB/NB‐COOCH3 copolymers were confirmed to be noncrystalline, exhibited good thermal stability (Td > 400°C) and showed good solubility in common organic solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
19.
The formation of long‐chain branches (LCBs) during ethylene polymerization with a combination of catalysts was studied by Monte Carlo simulation. The model describes polymerization with a non‐branching catalyst that produces linear macromonomers, and a branching catalyst that produces linear and branched macromonomers. The LCBs are formed when the branching catalyst incorporates a macromonomer. The discussion is based on the three types of chain topology obtained during the synthesis: linear, comb‐branched, or hyperbranched. Simulation results show how the chain length distribution and the number of LCBs change according to the ratio between the two catalysts present in the reactor. The ratio hyperbranched/comb‐branched is defined to evaluate the system composition and the contribution of each catalyst. 相似文献
20.
Wannida Apisuk Alexandra G. Trambitas Boonyarach Kitiyanan Matthias Tamm Kotohiro Nomura 《Journal of polymer science. Part A, Polymer chemistry》2013,51(12):2575-2580
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580 相似文献