首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of its applicability to biological specimens (nonconductors), a single-molecule-imaging technique, atomic force microscopy (AFM), has been particularly powerful for visualizing and analyzing complex biological processes. Comparative analyses based on AFM observation revealed that the bacterial nucleoids and human chromatin were constituted by a detergent/salt-resistant 30-40-nm fiber that turned into thicker fibers with beads of 70-80 nm diameter. AFM observations of the 14-kbp plasmid and 110-kbp F plasmid purified from Escherichia coli demonstrated that the 70-80-nm fiber did not contain a eukaryotic nucleosome-like "beads-on-a-string" structure. Chloroplast nucleoid (that lacks bacterial-type nucleoid proteins and eukaryotic histones) also exhibited the 70-80-nm structural units. Interestingly, naked DNA appeared when the nucleoids from E. coli and chloroplast were treated with RNase, whereas only 30-nm chromatin fiber was released from the human nucleus with the same treatment. These observations suggest that the 30-40-nm nucleoid fiber is formed with a help of nucleoid proteins and RNA in E. coli and chroloplast, and that the eukaryotic 30-nm chromatin fiber is formed without RNA. On the other hand, the 70-80-nm beaded structures in both E. coli and human are dependent on RNA.  相似文献   

2.
Mitochondrial DNA (mtDNA) mutations have been associated with disease and aging. Since each cell has thousands of mtDNA copies, clustered into nucleoids of five to ten mtDNA molecules each, determining the effects of a given mtDNA mutation and their connection with disease phenotype is not straightforward. It has been postulated that heteroplasmy (coexistence of mutated and wild-type DNA) follows simple probability rules dictated by the random distribution of mtDNA molecules at the nucleoid level. This model has been used to explain how mutation levels correlate with the onset of disease phenotype and loss of cellular function. Nonetheless, experimental evidence of heteroplasmy at the nucleoid level is scarce. Here, we report a new method to determine heteroplasmy of individual mitochondrial particles containing one or more nucleoids. The method uses capillary cytometry with laser-induced fluorescence detection to detect individual mitochondrial particles stained with PicoGreen, which makes it possible to quantify the mtDNA copy number of each particle. After detection, one or more particles are collected into polymerase chain reaction (PCR) wells and then subjected to real-time multiplexed PCR amplification. This PCR strategy is suitable to obtain the relative abundance of mutated and wild-type mtDNA. The results obtained here indicate that individual mitochondrial particles and nucleoids contained within these particles are not heteroplasmic. The results presented here suggest that current models of mtDNA segregation and distribution (i.e., heteroplasmic nucleoids) need further consideration.  相似文献   

3.
Qureshi A  Gurbuz Y  Niazi JH 《The Analyst》2011,136(13):2726-2734
A new capacitive biochip was developed using carboxy-CNT activated gold interdigitated (GID) capacitors immobilized with E. coli cells for the detection of cellular stress caused by chemicals. Here, acetic acid, H(2)O(2) and NaCl were employed as model chemicals to test the biochip and monitored the responses under AC electrical field by non-Faradaic electrochemical impedance spectroscopy (nFEIS). The electrical properties of E. coli cells under different stresses were studied based on the change in surface capacitance as a function of applied frequency (300-600 MHz) in a label-free and noninvasive manner. The capacitive response of the E. coli biochip under normal conditions exhibited characteristic dispersion peaks at 463 and 582 MHz frequencies. Deformation of these signature peaks determined the toxicity of chemicals to E. coli on the capacitive biochip. The E. coli cells were sensitive to, and severely affected by 166-498 mM (1-3%) acetic acid with declined capacitance responses. The E. coli biochip exposed to H(2)O(2) exhibited adaptive responses at lower concentrations (<2%), while at a higher level (882 mM, 3%), the capacitance response declined due to oxidative toxicity in cells. However, E. coli cells were not severely affected by high NaCl levels (513-684 mM, 3-4%) as the cells tend to resist the salt stress. Our results demonstrated that the biochip response at a particular frequency enabled the determination of the severity of the stress imposed by chemicals and it can be potentially applied for monitoring unknown chemicals as an indicator of cytotoxicity.  相似文献   

4.
5.
The results reported herein indicate that the ultraviolet-A (UVA) radiation-induced effects in Escherichia coli depend on its growth phase. Stationary-phase cells recover faster from a sub-lethal UVA exposure and have a higher resistance to lethal effect of the radiation than exponential growing cells. Although pre-incubation in spent medium supernatant increased the resistance of log-phase cells to lethal UVA effects, this pre-treatment considerably prolonged the duration of the radioinduced sub-lethal growth delay. The aim of the present study was to investigate the effect exerted by the E. coli conditioned media and evaluate the influence of nutritional stress, hydrogen peroxide and acetate. Pre-incubated in conditioned medium, cells in exponential growth phase were irradiated and the induced effects were compared with those found when catalase, high culture densities and acetate were employed. Unexpectedly, the duration of the growth delay in cells submitted to these treatments was shortened in comparison with control cells incubated in conditioned medium with no modifications. Lengthening of the growth delay was mimicked when exponentially growing cells were incubated in fresh medium supplied with 5 microM H(2)O(2). The effects of spent medium on wild type and rpoS mutant strains were similar, indicating that this response is independent of RpoS controlled functions. We assumed that an oxidative component of the spent medium, probably H(2)O(2), could be involved in the observed phenomenon. This effect is specific of E. coli and independent of rpoS.  相似文献   

6.
When cells are first exposed to low levels of oxidative stress, they develop a resistance to a subsequent challenge of the same stress, even at higher levels. Although some protein(s) induced by oxidative stress likely mediated this adaptive response, the nature of these proteins is unknown. In this study, the total proteins extracted from human U937 leukemia cells exposed to 50 micromM H(2)O(2) for 24 h to induce an optimal protective response were analyzed by two-dimensional polyacrylamide gel electrophoresis. H(2)O(2) treatment induced elevation of level of 34 protein spots. An analysis of these spots by a matrix associated laser desorption/ionization time-of-flight mass spectrometry identified 28 of the H(2)O(2)-induced proteins. These include proteins involved in energy metabolism, translation and RNA processing, chaperoning or mediating protein folding, cellular signaling, and redox regulation, as well as a mitochondrial channel component, and an actin-bundling protein. Therefore, it appears that the cellular adaptation to oxidative stress is a complex process, and is accompanied by a modulation of diverse cellular functions.  相似文献   

7.
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.  相似文献   

8.
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.  相似文献   

9.
A large literature exists on modeling the influence of sequence-specific DNA-binding proteins on the shape of the DNA double helix in terms of one or a few fixed constraints. This approach is inadequate for the many proteins that bind DNA sequence independently, and that are present in very large quantities rather than as a few copies, such as the nucleoid proteins in bacterial cells. The influence of such proteins on DNA configurations is better modeled in terms of a great number of mobile constraints on the DNA. Types of constraints that mimic the influence of various known non-specifically DNA binding proteins include DNA bending, wrapping, and bridging. Using Monte-Carlo simulations, we here investigate the influence of (non-interacting) mobile DNA-protein-DNA bridges on the configurations of a 1000 bp piece of linear DNA, for both homogeneous DNA and DNA with an intrinsic planar bend. Results are compared to experimental data on the bacterial nucleoid protein H-NS that forms DNA-protein-DNA bridges. In agreement with data on H-NS, we find very strong positioning of DNA-protein-DNA bridges in the vicinity of planar bends. H-NS binds to DNA very cooperatively, but for non-interacting bridges we only find a moderate DNA-induced clustering. Finally, it has been suggested that H-NS is an important contributor to the extreme condensation of bacterial DNA into a nucleoid structure, but we find only a moderate compaction of DNA coils with increasing numbers of non-interacting bridges. Our results illustrate the importance of quantifying the various effects on DNA configurations that have been proposed for proteins that bind DNA sequence independently.  相似文献   

10.
Sublethal effects of ultraviolet A radiation on Enterobacter cloacae   总被引:1,自引:0,他引:1  
We report the sublethal effects of ultraviolet A (UVA) on Enterobacter cloacae in comparison with those produced in Escherichia coli. UVA-induced sublethal effects were investigated in either bacterial membrane and at tRNA level. Limited dependence on oxygen concentration for photoinduced inhibition of biochemical membrane functions and low levels of oxidative damage during the irradiation period were found in En. cloacae. On the other hand, ultraviolet spectroscopy and reversed-phase HPLC analysis of hydrolysed tRNA showed that radio induced damage to tRNA is similar in En. cloacae and E. coli. Nevertheless, growth delay induced by UVA in En. cloacae was shorter than that found in E. coli submitted to the same experimental conditions. A limited post-irradiation ppGpp accumulation and the absence of any influence of the membrane damage on the growth delay extent seem to be responsible for the shortness of this effect in En. cloacae. Most of the differences between En. cloacae and E. coli could be attributed to an increased ability of En. cloacae to overcome oxidative stress during UVA exposure.  相似文献   

11.
将水稻PHGPx(OsPHGPx)的编码序列克隆到表达载体pGEX-6P-1上, 并转化为大肠杆菌进行表达. 通过GST亲和层析、离子交换层析和凝胶过滤层析, 制备了可用于晶体学研究的OsPHGPx, 其纯度超过95%, 具备明显的PHGPx活性. 质谱显示OsPHGPx的精确分子量为19642.5553, 与理论分子量基本一致. OsPHGPx在多个晶体生长条件下出现微晶. 三维结构同源建模显示 OsPHGPx的结构为硫氧还蛋白折叠形式.  相似文献   

12.
Premkumar JR  Lev O  Marks RS  Polyak B  Rosen R  Belkin S 《Talanta》2001,55(5):1029-1038
Whole-cell luminescent bioreporter sensors based on immobilized recombinant Escherichia coli are described and evaluated. The sensors were prepared by glutaraldehyde-anchoring of nonspecific anti-E. coli antibodies on aminosylilated gold or silica glass surfaces with subsequent attachment of the probe bacteria. We demonstrate the generality of the concept by attachment of several E. coli strains that express luciferase in response to different physiological stress conditions including heat shock, DNA damage (SOS), fatty acid availability, peroxide and oxidative stress. The sensors can be used either as single- or multiple-use disposable sensing elements or for continuous operation. We show compatibility with optical fiber technology. Storage stability of the sensors exceeded 5 months with no measurable deterioration of the signal. Repeatability on exposure in successive days was <15%, as was sensor to sensor reproducibility. Sensitivity and detection limits of the immobilized cells were comparable to that of non-immobilized bacteria.  相似文献   

13.
Single‐cell gel electrophoresis, or the comet assay, is usually performed with nucleoids prepared after a lysis of either whole cells (more often) or isolated cell nuclei (rarely). Electrophoretic properties of the second type of nucleoids have never been investigated carefully. We measured the kinetics of the DNA exit from nuclei‐derived nucleoids in comparison with cell‐derived nucleoids. The results show that general organization of the nuclei‐derived nucleoids is not changed very much in comparison with nucleoids commonly obtained from whole cells. At the same time, in contrast to the cell‐derived nucleoids, for which the exit is stepwise and cooperative, the DNA exit from the nuclei‐derived nucleoids can be described by a simple monomolecular kinetics. This difference is probably due to agarose penetration into nuclei (but not into cells) before polymerization of the agarose gel. We suggest that single‐nucleus gel electrophoresis may be a way for the comet assay standardization.  相似文献   

14.
The Escherichia coli protein YcgF contains a photosensory flavin adenine dinucleotide (FAD)-binding BLUF domain covalently linked to an EAL domain, which is predicted to have cyclic-di-guanosine monophosphate (GMP) phosphodiesterase activity. We have cloned, overexpressed and purified this protein, which we refer to as blue light-regulated phosphodiesterase (Blrp) for its putative activity. Blrp undergoes a reversible photocycle after exposure to light in which the spectrum of its photostationary state and kinetics of recovery of the dark state are similar to those of the isolated BLUF domain of the AppA protein. Unlike the AppA BLUF domain, the chromophore environment in the context of full-length Blrp is asymmetric, and the protein does not undergo any detectable global changes on exposure to blue light. When overexpressed in E. coli, Blrp copurifies with certain proteins which suggests that it plays a protective role in response to oxidative stress. Predicted proteins from Klebsiella pneumoniae and from a bacterium in the Sargasso Sea are similar to E. coli Blrp in both their BLUF and EAL domains, which suggests that blue light sensing in these bacteria may follow similar pathways.  相似文献   

15.
Cellular DNA is constantly exposed to oxidative stress from both exogenous and endogenous sources, creating lesions that lead to aging related diseases, including cancer. 8-Oxo-guanine (8OG) is one of the most common forms of oxidative DNA damage, and failure to repair this lesion results in G:C to T:A transversion. Another common lesion, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapydG), shares the same precursor as 8OG. In Escherichia coli, both lesions are recognized and excised by the DNA glycosylase Fpg. X-ray crystallographic studies have shown that FapydG and 8OG adopt different conformations in the active site of Fpg. Our simulations suggest that the different binding modes observed for 8OG and FapydG arise directly from response to the nonconserved E77 present in the thermophilic Fpg sequences used for the crystallography experiments. In simulations with consensus S77, these lesions adopt very similar binding modes.  相似文献   

16.
氧化应激与艾滋病   总被引:1,自引:1,他引:0  
日益累积的证据表明,HIV感染和艾滋病进展与氧化应激密切相关,HIV/AIDS病人处于高度氧化应激状态,抗氧化剂补充有望成为艾滋病预防和治疗的重要措施之一。通过HIV感染者的氧化应激,氧化应激在艾滋病致病机理中的作用和HIV/AIDS病人的抗氧化剂补充3个方面论述了氧化应激与艾滋病的关系。  相似文献   

17.
Radiation therapy has been used in the treatment of a wide variety of cancers for nearly a century and is one of the most effective ways to treat cancer. Low-dose ionizing radiation (IR) can interfere with cell division of cancer and normal cells by introducing oxidative stress and injury to DNA. The differences in the response to IR-induced DNA damage and increased reactive oxygen species between normal human fibroblasts (NHFs) and cancerous SHSY-5Y cells were considered. H2AX staining and comet assays revealed that NHF cells responded by initiating a DNA repair sequence whereas SHSY-5Y cells did not. In addition, NHF cells appeared to quench the oxidative stress induced by IR, and after 24 h no DNA damage was present. SHSY-5Y cells, however, did not repair their DNA, did not quench the oxidative stress, and showed characteristic signs that they were beginning to undergo apoptosis. These results indicate that there is a differential response between this cancerous and normal cell line in their ability to respond to low-dose IR, and these differences need to be exploited in order to treat cancer effectively. Further study is needed in order to elucidate the mechanism by which SHSY-5Y cells undergo apoptosis following radiation and why these normal cells are better equipped to deal with IR-induced double-strand breaks and oxidative stress.  相似文献   

18.
Oxidative stress is a key underlying factor in cognitive decline and atherosclerosis. Oxidative stress occurs at the cellular level with an imbalance between reactive oxygen species and reactive nitrogen species and a deficiency in antioxidants. Mounting evidence suggests that berry flavonoids may promote cellular health by exerting antioxidant properties. Black currant and various berry extracts were tested in microglia (BV-2) and cardiomyocyte (HL-1) cell lines to study their biological effects. The principal ingredients in black currant and cranberry extract–delphinidin 3-rutinoside (D3R) and cyanidin 3-glucoside (C3G), were also assessed. A menadione-induced oxidative stressor was used, and its output was quantified to detect oxidative stress (CellROXTM). Black currant extract had similar antioxidant effects as N-acetylcysteine (NAC) in HL-1 cells with regard to cellular protection, whereas cranberry extract was ineffective. In contrast, cranberry extract was comparable in effectiveness to black currant extract in BV-2 cells. D3R and C3G also reduced oxidative stress similarly to whole berry extracts, which indicates that these ingredients may confer the antioxidant effects of berries. Black currant and cranberry extracts inhibit oxidative stress in microglial and cardiomyocyte cell lines. Black currant extract was more effective in reducing oxidative stress in the HL-1 cells, whereas cranberry extract was comparable in reducing oxidative stress in the BV-2 cells. The results suggest that berry flavonoids exert neuro- and cardioprotective effects.  相似文献   

19.
The aim of the present study is to evaluate the occurrence of oxidative stress in the cladoceran Daphnia longispina exposed to UV-A and UV-B radiation. The activity of antioxidant enzymes and lipid peroxidation markers is investigated and the protective action of ascorbic acid determined. Results show differences in the lethality radioinduced by UV-A and UV-B. Both UV-A and UV-B exposure cause an important increase in malonaldehyde (MDA) concentration and catalase activity. Ascorbic acid addition reduces the MDA concentration, indicating that the oxidative stress caused by either UV-A or UV-B radiation can be controlled by antioxidants. The increase of the antioxidant enzymes may be a response mechanism to oxidative stress.  相似文献   

20.
Yoo BS  Regnier FE 《Electrophoresis》2004,25(9):1334-1341
A method for detecting carbonylated proteins in two-dimensional electrophoresis (2-DE) was developed using biotinylation and avidin-fluorescein isothiocyanate (FITC) affinity staining. The method was used to examine oxidatively modified proteins associated with oxidative stress. Carbonyl formation in proteins was first examined in a model system by subjecting bovine serum albumin (BSA) and ribonuclease A (RNase A) to metal-catalyzed oxidation (MCO). Carbonyl group formation was found to occur at multiple sites along with a small amount of polypeptide chain cleavage. In vivo studies were conducted in yeast cell cultures using 5 mM hydrogen peroxide to induce oxidative stress. Biotinylation of yeast protein was accomplished during extraction at 4 degrees C in a lysis buffer containing 5 mM biotin-hydrazide. Biotin-hydrazide forms a Schiff base with a carbonyl group on an oxidized protein that is subsequently reduced before electrophoresis. Proteins were separated by either 2-DE or sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Biotinylated species were detected using avidin-FITC affinity staining. Detection sensitivity with biotinylated proteins was five times higher than achieved by silver staining. The limit of detection with avidin-FITC staining approached 0.64 pmol of protein-associated carbonyls. Twenty carbonylated proteins were identified in the proteome of yeast following oxidative stress with hydrogen peroxide. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis of tryptic peptides was used to identify peptides extracted from gels. Aconitase, heat shock protein SSA1 and SSC1, pyruvate decarboxylase isozyme 1, pyruvate kinase 1, enolase 1 and 2, phosphoglycerate kinase, fructose-bisphosphate aldorase, and glyceraldehyde-3-phosphate dehydrogenase were among the major targets of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号